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Abstract

The division problem consists of allocating an amount M of a perfectly divisible
good among a group of n agents. Sprumont [13] showed that, given M, if agents have
single-peaked preferences over their shares, the uniform allocation rule is the unique
strategy-proof, efficient, and anonymous rule. Ching and Serizawa [9] extended this
result by demonstrating that, when the rule depends not only on the preferences of
the agents but also on the amount M to be allocated, the domain of single-plateaued
preferences is the maximal one under which there exists at least one rule satisfying
the properties of strategy-proofness, efficiency, and symmetry. We characterize the
maximal domain for each value of M and n and show that it is larger than the set
of single-plateaued preferences. In addition, we show that their intersection, as M
varies from 0 to 0o, is precisely the domain of single-plateaned preferences, a result
that implies that of Ching and Serizawa [9]..

Resumen

El problema de la divisién consiste en distribuir una cantidad M de un bien per-
fectamente divisible entre un grupo de n agentes. Sprumont [13] demostré que, dado
M, si los agentes tienen preferencias unimodales sobre las cantidades recibidas del
bien, la regla de distribucién uniforme es la tinica regla no manipulable, eficiente y
anénima. Ching y Serizawa [9] ampliaron este resultado al demostrar que, cuando la
regla depende no sélo de las preferencias de los agentes sino también de la cantidad
M a distribuir, el dominio de preferencias unimodales con plateau es el maximal para
el cual existe al menos una regla que cumpla las propiedades de no manipulabili-
dad, eficiencia y simetria. Para cada M y n caracterizamos el dominio maximal y
demostramos que es mayor que el conjunto de preferencias unimodales con plateau.
Ademaés, demostramos que su interseccién, al variar M desde 0 a 00, es precisamente
el dominio de preferencias unimodales con plateau, un resultado que implica el de
Ching y Serizawa [9].



1 Introduction

The division problem consists of allocating an amount M of a perfectly divisible
good among a group of n agents. A rule maps preference profiles of agents into
n shares of the amount M. Sprumont [13] shows that, given M, if agents have
single-peaked preferences over their shares, the uniform allocation rule is the unique
strategy-proof, efficient, and anonymous rule. This is a nice example of a large
literature that, by restricting the domain of preferences, investigates the possibility
of designing strategy-proof rules.! Moreover, in this case, single-peakedness does not
only admit strategy-proof rules but also efficient ones.

In this paper we ask how much can we enlarge the set of single-peaked preferences
and still allow for rules satisfying interesting properties. In particular, we characterize
the maximal domain of preferences, including the set of single-peaked preferences,
under which there exists at least one rule on this domain satisfying the properties of
strategy-proofness, efficiency, and symmetry.

It turns out that this maximal domain depends crucially on both M and n, since
the egalitarian share M/n plays, as a consequence of the symmetry requirement, a
fundamental role in its description. In particular, our domain includes only prefer-
ences whose set of best shares is an interval. Additionally, the following requirement
is satisfied. If the highest share in this interval is smaller than M /n, then the pref-
erence has to be “decreasing” between this highest share and M/n, although it may
have “small” intervals of indifference (“small” because the sum of the extremes can
not exceed M); moreover, the egalitarian share M/n has to be at least as good as
all larger shares, but all orderings are possible among them. Symmetrically, if the
smallest of the best shares is bigger than M /n, then the preference has to be “increas-
ing” between M /n and this smallest share, although it may have “large” intervals
of indifference (“large” because the sum of the extremes has to be larger than M);?
moreover, the egalitarian share M /n has to be at least as good as all smaller shares,
but also all orderings are possible among them. Finally, if M/n is itself one of the
best shares, no additional requirement is imposed. Notice that the set of these pref-
erences, given M and n, is much larger than the single-plateaued domain studied by
Moulin [10] and Berga [4] in a public good context, since single-plateaued preferences
are strictly monotonic in both sides of the plateau.

Furthermore, and as a consequence of our main result, we find that the single-
plateaued domain coincides with the intersection of all of our maximal domains, when
M varies from 0 to co. This also implies that, when the rule depends not only on
the preferences of the agents but also on the amount M to be allocated, the maximal
domain coincides with the set of single-plateaued preferences as already shown by
Ching and Serizawa [9]. Notice that in their setting, M is treated as a variable of the
problem rather than one of its data. We want to emphasize though, that in spite of
their result, our analysis with a fixed amount M is meaningful since there are many

1See Sprumont [14] and Barbera [1] for two comprehensive surveys of this literature as well as
for two exhaustive bibliographies.

2See Example 1 at the end of Section 2 for an illustration of why efficiency imposes this condition
on the intervals of indifference.



allocation problems where to assume the contrary is senseless.

Different papers have also identified maximal domains of preferences allowing for
strategy-proof social choice functions in voting environments. Barbera, Sonneschein,
and Zhou [3] show that the set of separable preferences is the largest domain preserv-
ing strategy-proofness of voting by committees without both, dummies and vetoers.
Serizawa [12], Barbera, Mass6, and Neme [2], Berga and Serizawa [6], and Berga [5]
improve upon this result in several directions; for instance, by either looking at a
more general voting model and/or by admitting larger classes of social choice func-
tions. We want to emphasize that we do not claim that the domain identified here has
economic relevance; rather, we understand our result as giving a precise and definite
answer to an interesting and economically relevant question raised by all restricted
domain literature; namely, how much can we enlarge the restricted domain and still
be able to define on it strategy-proof rules?

Finally, it is worth mentioning that, in contrast to all the papers mentioned above,
the rule that we exhibit when showing our maximality result is not “tops-only” in the
sense that it does not depend exclusively on the n sets of best shares. The efficiency
requirement forces the rule to be sensible to intervals of indifference outside the “top”.

The paper is organized as follows. Section 2 contains notation, definitions, and
the statement of our result. This is proven in Section 3. Section 4 concludes by
obtaining Ching and Serizawa [9] result as a corollary of our theorem and by relating
our maximal domains with the “option” sets associated with strategy-proof, efficient,
and symmetric rules.

2 Preliminaries, Definitions and the Theorem

Agents are the elements of a finite set NV = {1,..,n} where n > 2. They have to
share the amount M € R, of a perfectly divisible good. An allocation is a vector
(z1, ..., Zn) € R} such that }z; = M. We denote by Z (M) the set of allocations.
Every agent i € N has a preference ordering over the interval [0, M| represented
by a complete preorder R;. Let F; be the strict preference relation associated with
R; and let I; be its indifference relation. We assume that agents have continuous
preferences in the sense that for each z € [0, M] the sets {y € [0, M] | zR;y} and
{y € [0, M] | yR;z} are closed. We denote by R (M) the set of continuous preferences
on [0, M] and by U a generic subset of R (M). Preference profiles are n-tuples of
continuous preferences on [0, M] and they are denoted by R = (R;, ..., R,) € R (M)".
When we want to stress the role of agent i's preference we will represent a preference
proﬁle b‘_'f {H‘H R‘—i}

A rule on U C R (M) is a function & : U™ — Z (M); that is, 3= &:(R) = M for
all R € U™

Rules on a set of preferences require each agent to report a preference on this set.
A rule is strategy-proof if it is always in the best interest of agents to reveal their
preferences truthfully. Formally,

Definition 1 A rule onld, ® : U™ — Z (M), is strategy-proof if for all (R, ..., R,) €
U™, alli € N, and all R, € U we have ®; (R;, R_;) R:®; (R;, R_;).



We are also interested in rules satisfying the following two properties.

Definition 2 A rule on U, ® : U™ — Z (M), is efficient if for all R € U™ there
i8 no (z1,...,2s) € Z (M) sich that for alli € N, zR;®;(R), and for at least one
j € N we have z; P;®; (R).

Definition 3 A rule on U, ® : U™ — Z (M), is symmetric if for all R € U™ and
alli,j € N such that R; = R; we have ®; (R) = &, (R).?

We will consider different subsets of preferences, all of them related to single-
peakedness. Before stating the definitions, we need the following notation. Given
a preference R; € R (M) we denote the set of preferred shares according to R; as
p(R:)) = {z€[0,M] | zRiy for all y € [0, M]}. Let p(R:) = infp(R;) and p(R;) =
sup p(R;). Abusing notation, we will also denote by p(R;) the unique element of the
set p (R,) whenever p(R,) = P(R.).

The first definition is the classical notion of single-peakedness. It requires that
the preference R; has a unigue maximal element p(R;) and at each of its sites the
preference is monotonic and strict. Formally,

Definition 4 A preference R; € R (M) is single-peaked if p (R;) is a singleton and
for all z,y € [0, M] we have xFP,y whenevery <z <p(R;) orp(R) <z <.

Let R, (M) be the set of single-peaked preferences on [0, M]. The following rule
on R, (M), the uniform allocation rule, has been extensively studied.

Definition 5 The uniform allocation rule on R,(M), ¢ : R,(M)" — Z (M), is
defined as follows: for all R € R, (M)" andi € N,

max {p(R:),A(R)} if M > Tp(R;),

where A (R) solves 3 ; (R) = M.

Ching [8] characterized the uniform allocation rule on R, (M) as the unique one

satisfying strategy-proofness, efficiency, and symmetry.*
The second definition of preferences is a bit weaker since it allows for indifferences
on the top.

3Ching (8] and Ching and Serizawa [9] name this property equal treatment of equals and strong
symmetry, respectively. Ching and Serizawa [9] use the name of symmetry when the condition
% (R) = ®; (R) is replaced by ®; (R) I;®; (R). However, they show that, under efficiency, both

4See Ching [7), Schummer and Thomson [11], Sprumont [13], Thomson [15], [16], and [17] for
alternative characterizations of the uniform allocation rule. In a recent paper, Weymark [18] shows
that Sprumont’s characterization using efficiency, strategy-proofness, and anonimity still holds even
if the continuity of the preferences is not required.



Definition 6 A preference R, € R (M) is single-plateaued if p (R;) = [p(R:), B(R:)]
and for all z,y € [0, M] we have =P,y whenever y < z < p(R;) or B(R:) <z < y.®

Let R, (M) be the set of single-plateaued preferences. The following rule on
R (M) constitutes a natural extension of the uniform allocation rule to the domain

of single-plateaued preferences.

Definition 7 The uniform allocation rule on Ry (M), ¥ : Ry (M)" — Z (M), is
defined as follows: for all R € Ry, (M)" andi€ N,

min {p (R:), A (R)} if M < T;p(Ry),
%(R)=1{ mip{p(R),p(R)+A(R)} #L;p(R)<M<T,P(Ry),
max {P (R) , A (R)} if T, P(Ry) < M,

where A(R) solves 3 ¢;(R) = M.

Finally, our third definition of preferences, the weakest one, refers to the following
interval © (R;), which will play a fundamental role in the sequel:

0 (R) = [min {22, p(R)} ,max { . B(R)}].

Definition 8 A preference R; € R (M) is restricted-monotonic on © (R;) if for all
T,y € [ut M]:

(a) If [z <y and M/n < y < p(R;)) then [yR;x and if yl;z then there ezists [zo, yo] 2
[z,y] such that zo + yo > M and z'Liyy for all =’ € [zo, yo]]-

() If [z < y and B(R;) < = < M/n) then [zRy and if zl;y then there egists [xo, yo] 2
[z,y] such that zo + yo < M and =’ Ly for all =’ € [zo, yo]].

(c) If = € [p(R), B(R)] then zLp(R,).

Notice that the number of agents n also plays a role in conditions (a) and (b) of
the above definition. Therefore, given M and n, we denote by RS, (M,n) the set
of preferences satisfying Definition 8 and we name it the set of restricted-monotonic
preferences on ©; that is, R; € R, (M, n) if and only if R; is restricted-monotonic on
© (R;). We will show in Theorem 1 that the set of restricted-monotonic preferences
on O is the maximal domain of preferences admitting strategy-proof, efficient, and
symmetric rules. Figure 1 illustrates three possible types of restricted-monotonic
preferences on © depending on whether M/n < p(R:), P(R:) < M/n, or p(R;) <
M/n <P (R:).

[ Insert Figure 1 here |

Following Ching and Serizawa [9] we can define, given (M, n) and a list of prop-
erties that rules may satisfy, the concept of maximal domain of preferences.

5See Moulin [10] and Berga [4] for characterizations of strategy-proof rules under this domain
restriction in a public good context.




Definition 9 A set R,, (M,n) of preferences is a mazimal domain for a list of prop-
erties if: (1) Rm (M,n) C R(M); (2) there ezists a rule on Rm (M, n) satisfying
the properties; and (9) there is no rule on R' satisfying the same properties such that
R (M,n) SR C R(M).

Theorem 1 The set of restricted-monotonic preferences on ©, RS, (M,n), is the
unique magzimal domain including R, (M) for the properties of strategy-proofness,
efficiency, and symmetry.

Before proving Theorem 1 we illustrate, in Example 1 below, the reason why
the properties of efficiency and symmetry together force the domain to contain only
preferences with intervals of indifference of a very special type outside the top.
Example 1. Consider the case where M = 8 and the set of agents is N = {1,2}.
Let ® be any efficient and symmetric rule. Consider the preference R on [0, 8] defined
by:

yPrforall0<z<y<2andall5<z<y<S§,
ylz for all z,y € [2,5].

Notice that R ¢ RS, (8,2) since condition (a) of Definition 8 is not satisfied because
215 and we can not find an interval of indifference [y, yo] 2 (2, 5] such that zo+yo > 8.
Ammmﬂdnmmnofprefermmmnutmntunﬁbmmbymeﬂy@(ﬁ I_I)
(4,4) but the allocation (2,6) contradicts the efficiency of & because 2/4 and 6P4.
Consider now the preference R on [0, 8] defined by:

yPrforall0<z<y<3andall6<z<y<8,
ylz for all z,y € [3,6].

Notice now that R € R, (8,2) since condition (a) of Definition 8 is satisfied because
the sum of the extremes of the indifference interval (3, 6] is larger than 8. In contrast,
the symmetric allocation & (R R) (4,4) is now efficient.

To illustrate the role of condition (b) in Definition 8 consider the preference Ron
[0, 8] defined by:

m}_?’yfnrallﬂﬂz{yﬂiimdaﬂﬁﬂx{yﬂE,
zly for all z,y € (3, 6].

In this case R ¢ R, (8,2) because now the sum of the extremes of the indifference
interval is larger than 8. By symmetry & (R, R) = (4,4) but 2P4 and 674 which
indicates that ® is not efficient. Finally, consider the preference R' on [0, 8] defined
by:

zPyforall0<z<y<2andal §<z<y<8,

zl'y for all z,y € [2,5].

Now R' € R®,, (8,2) since condition (b) of Definition 8 is satisfied because the sum
of the extremes of the indifference interval [2,5] is smaller than 8. In this case the
symmetric allocation ® (R', R') = (4,4) is also efficient.



3 The Proof of Theorem 1

Before proving Theorem 1 we state, in the following Remark, a consequence of Ching’s
characterization (Ching [8]) that we will repeatedly use in this section.

Remark 1 Let @ : U™ — Z (M) be any rule on U (2 R, (M)) satisfying strategy-
proofness, efficiency, and symmetry. If R €R,(M)" then ® (R) = p (R); that is, ®
coincides with the uniform allocation rule on the subset of single-peaked preferences.

Now, let (M, n) be given and let R.,, (M, n) be a subset of preferences satisfying the
following condition: R, (M) € R, (M,n) C R (M). Suppose that there exists a rule
on Rm (M,n), ® : Rm (M,n)" — Z (M), satisfying strategy-proofness, efficiency,
and symmetry. Moreover, let R?, RM € R, (M) be the two single-peaked preferences
such that p(R°) = 0 and p (RM) = M.

First, to show that R,, (M,n) = RE, (M,n) we will use the following Lemmata.

Lemma 1 Let Ry € Ry (M, n) and z,y € [0, M] be arbitrary.
(a) If M/n < z <y <P(Ro) then yRox.
() If p(Ro) <y <z < M/n then yRoz.

Proof of Lemma 1. Case (a): Suppose otherwise; that is, there exist Hy €
R (M,n) and £F € [0, M] such that M/n < T < § < P(Ro) and THy. We
can also find (see Figure 2) zo,y0 € [0, M] such that:

(a.1) M/n < o < yo < P(Ro),
(a.2) zoloo,
(a.3) zoRox for all z € [M/n, o], and

(a.4) zoPox for all z € (o, ¥o) -
| Insert Figure 2 here |

Notice that zg is the smallest value below p(Ry) and above M/n at which Hy
starts decreasing to its right.® Since R, is continuous and F([Ro) RoZ, the existence
of such yp follows. Obviously, zo could be equal to M/n, yo equal to § (Fp), or both.

Note that for all 2y € (Zo, %o) the following inequalities hold:

M-y M-2zg M-z M
n—1 = n—1 S =1 E;' (1)

Now, fix 20 € (%o,Yo) and let R € R, (M) be such that p(R) = =% and

({—:’F) P (%{—:“) . The existence of such a preference R follows from condition (1).

Let R € R, (M) be any preference such that p (R) = zo. By Remark 1, & (f“z, i R)
coincides with ¢ (R, R R), the uniform allocation rule, and since
M-z
n—1

Zo+ (n—1)- < M,

5We often abuse language by using the utility representation terminology to refer to properties
of preference relations.



we have that &, (ﬁ,R, .,.,R) = zo. By the strategy-proofness of & we have that
®; (Ro, R, .., R) Rozo. (2)

Again, by Remark 1, we have that @, (R”.R,..,R) = zg and by strategy-
proofness of ® we also have that 2oRM 3, (Ro, . ST R) implying that

@, (R.,,R, R) < 2. (3)
Finally, by Remark 1, we have that &, (R“, R,...,R) = M/n and by strategy-
proofness of & we must have that M/nR°®; (Ro, R, ., R) implying that
&, (Ro,R,.... B) > 2. @)
Then, by (2), (3), and (4) we have that

AR M- M-
@(RQ,R,...,R) = (Irl, i ] )
with M/n < z; < zo and z;l¢zp. But the allocation (1-‘0,%'{“, . %ﬁ“) contradicts
efficiency of @.
Case (b): Its proof is omitted since follows an argument which is symmetric to
the one used to prove Case (a). [

Lemma 2 Let Ry € Ry (M, n) and = € [0, M] be arbitrary.
(a) If £ < M/n < P(Rq) then M/nRozx.
(b) If p(Ro) < M/n < z then M/nRoz.

Proof of Lemma 2. Case (a): Suppose otherwise; that is, there exist Hy €
Rm (M, n) and 7o < M/n < p(Ro) such that zoFoM/n.
First, assume that M/n is a minimal element on [z, M/n| relative to Ro; that is

M M
yﬂq; for all y € [zo, :] g (5)
Since ¥ is symmetric, we have that ® (Ry,..., Rp) = (M/n, ..., M/n). By condition
(5) and Lemma 1 we have that for all £ € (ﬂ,min M — 20,5(Ro) - %}]

(=) Bt (e B3

Let & = min {¥ — 79,5 (Ro) — 4}. Then, either

M M M M
(M nM o (M4 0) R,
n n n n
depending on whether £ is either equal to 2 — x4 or to P (Ro) — &, respectively. Then
the allocation ((JE —+—E) A (";‘f - E) yMn,..., Mfﬂ) contradicts the efficiency of ®.

, assume that there exists yg € (zo, M/n) such that M /nFyy. Then, there
exist z;, ¥; and z; such that:



(1) 0< 2 <z <th < M/n,
(3.2’} IlfnhIanﬂ,

(a.3") 2,1 Ppz for all z € (z),11), and
(a.4’) y1Joz for all z € [y, M/n].

Note that

M_M-y M-z M-z
n~- n-—-1 n—1 n-1
Now, let R € R,(M) be any single-peaked preference such that p[R) = M=

=
and M=2.pM-u By Remark 1, &, (R™, R, .., R) coincides with ¢ (R R, R) =
M/n, the uniform allocation rule. By the strategy-proofness of ®, we have that

@ (Ro,R, .. R) Ros- ©

Again, by Remark 1, we have that &; (R%R,..., R) = 21 and by the strategy-
proofness of & we also have that 2,R°®; (Ro, R, ..., R) implying that
®, (Ro, R, ... R) > 2. (7)
Then, by (6) and (7) we have that
%, (Ro,R, ... R) > . (8)

Finally, by Remark 1, we have that ®, (R",R, T R) = M/n and by the strategy-
proofness of & we must have that M/nRM®, (fﬁ,ﬂ, .",R) implying that

®, (Ro,R,...R) < % (9)
Then by (8) and (9) we have that
@ (Ro, R, B) = (=, 222, 2 =22)

with 33 € 23 € M/n and z/oM/n (by construction). But then, the allocation
(;;1, M-s ., %:—:l) contradicts the efficiency of ®, since #=22 < M- R e R, (M),
and all preference orderings are transitive.

Case (b): Its proof is omitted since follows an argument which is symmetric to
the one used to prove Case (a). n

Lemma 3 Let Ry € R,, (M,n) and z € [0, M] be arbitrary.
(a) If z < M/n < P (Ry) is such that zIgM/n then M /nlpx’ for all &' € [z, M/n].
(b) If p(Ro) < M/n < z is such that zloM/n then M/nlox’ for all 2’ € [M/n,z].
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Proof of Lemma 3. Case (a): Suppose otherwise; that is, there exist Ry €
R (M,n) and z; < M/n < B(Ro) such that z,loM/n and M/nFoz; for at least
one z; € (z;, M/n). Notice that by Lemma 2 we already know that M/nRoz.
Without loss of generality we can assume that there exists y € [z1, M/n| such that
M/nlgy for all y € [11, M/n], M/nPoy for all y € (z1,1), and z € (21,31). Note
that

M M-y M-z M-z

—_< < < 4

n- n-1 n—1 n—1

Now, let R € R, (M) be any single-peaked preference such that p (R) = %=

M-z pM-—
and S=R PSR

By Remark 1, ® (R™, R, .., R) coincides with ¢ (R™, R, .., R), the uniform al-
location rule; therefore, we have that &, (R“,R,...,R) = M/n. By the strategy-
proofness of ® we have that

8, (Ro,R,..., R) Hq%. (10)

Again, by Remark 1, we have that &, (IP,R,...,R) = z; and by the strategy-
proofness of & we also have that z; R°®, (Ra, Ry R) implying that

&, (Ro,R,....R) > 2. (11)
Then, by (10) and (11) we have that
Ql (&I R‘i t4ay f-t) E . {12]

Finally, since @, (RH,R,...,R) = M/n, by the strategy-proofness of ® we must
have that M/nRM®, (Ro, R, ..., R) implying that

&, (Ro,B,.., R) < % (13)

Then by (12) and (13) we have that

®(Ro,R,..,R) = (zgﬂ::ul—a ﬂi:f’)

with y3 < 25 < M/n and =22 < M-li Because M=-21 pM-ia pM-21 g 7, Jyz, we

have that the allocation (=, 451, ..., M=21) contradicts efficiency of ®.

vy M=K
Case (b): Its proof is omitted since follows an argument which is symmetric to
the one used to prove Case (a). n

Lemma 4 Let Ry € R, (M, n) and z,y € [0, M] be arbitrary.

(a) If M/n < z <y < p(Ro) is such that zIpy then there exists an interval [zp, yo] 2
[x,y] such that 2o + yo > M and =’ Ioyo for all 2 € [zo, o).

(b) If 5(Ro) < z < y < M/n is such that zlpy then there exists an interval [zo, yo] 2
[z,y) such that zo + yo < M and ' Ipyo for all &' € [zo, yo).
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To prove Lemma 4 we need the following definition.

Definition 10 Given a preference Ro € R (M) we say that the interval [zo, )] is @
mazimal interval of indifference for Ry if &' Iozo for all ¥ € [zo,y0] and if [z1,3n] 2
[0, o] is such that zlpzo for all z € [z1,1], then [zo, o] = [z1,1].

Proof of Lemma 4. Case (a): Let Ry € R,, (M,n) and suppose that z and y are
such that M/n < z < y < p(Ro) and zlpy. By Lemmas 1, 2 and 3 there exists a
maximal interval of indifference for Ry, [Zo, Yo, containing [z,y]. Notice that z'loyo
for all 2’ € [zo, o] and M/n < yo.

In order to obtain a contradiction, assume that zo + 3o < M. Let 2 € (zo, %0) be
any share such that M/n < z, and

(20 = o) > (y0 — 20).

Case (a.1): Assume that zo is such that there exists an integer n' with the prop-
erties that n > n' > 3 and

(' =1)20 < M < n'2.

Notice that this is possible as long as To + yo < M.
Let B € R, (M) be such that

M
p{R}=M—(n’-1}zo=z1and?Py1=M—{n’-1}yu.
Notice that M/n' < z; implies z; = M — (n' — 1)zg £ M/n'. Therefore, we have
’ ! M
h=M-(n'-1)yp<M-(n —l]zn=z;£E.

Define R o = ( Ro,..., Ro , R?, ..., R®, R) € Ry, (M,n)". To show that & (Ro) =
(n' —1)—times
( z0,..,20 ,0,...,0,2) suppose first that ® (Ro) = (ti,..., 11,1, ..., t2,13) with t; >
vy gt
(n'-1)~times
0. Since @ (Ry, ..., Ro, R®, ..., R°, Rp) = (M/n’,..., M/n,0,...,0, M/n') we have that
®, (Ro) = t3RM/n’, which implies

M—{n’—])yuﬂt;'ﬂg. (14)

But the allocation (t;, N tg) contradicts efficiency of ®. To see this, first
notice that 0P%,. Moreover, condition (14) implies M/n' < t; < yo. Therefore, we
have that ¢} IoyoRot; since t; < yo. Hence, t, Rot;.

Now assume that & (Ro) = (f;, ..,fl,ﬂ,..,{],f;-,) and f3 £ 2= M - (n' = 1) 2.
Since & (Ry, ..., Ro, RY, ..., R®, Rp) = (M/n/, ..., M/n', 0, ...,0, M/n') we have that ®, (Rg) =
tsRM/n', which implies -

M—(n'-1)yp<is< =

(15)
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But the allocation (2o, .., Z0,0, ..,0,2) contradicts efficiency of ®. To see this, first
notice that z;Pi; since p (R) = z; and z; # f3. Moreover, condition (15) implies

M/n' < t; < yo. Therefore, we have that zoloyoRof since iy < yo. Hence, zoRot;.
Therefore, @ (Ro) = ( 20,-.-,20 ,0,..-,0,2).
k.
(n'=1)—times

To finish with Case (a.1), suppose first that yo < M. Let £ > 0 be such that
(20 — %) > € > (yo — 20). Because (20— ¢€) € [0, 20}, (20 + &) > yo, and by Lemma
1, we have that (2o — £) Ipzo and (2o + ) FPozo, since [Zo, Y] is & maximal interval of
indifference for Ry. Therefore, the allocation

({&l _E] 1 (Iﬁ +£] 3 A0y ey 20 ,ﬂ,---,ﬂ, zl)
(n'—3)—times

contradicts the efficiency of . Now, assume that the extreme case yo = M holds.
Then, zo = 0 because our contradiction hypothesis says that zg + yp < M. In this
case Rp is such that zlpy for all z,y € [0, M]. But then, the statement of Lemma 4
follows, since for any zf, € (0, M/n) we have that [zg,y0] 2 [z,], Tp + ¥ > M, and
= Iyyo for all 2’ € [z, Yol

Case (a.2): Assume that n > 2 and that zo satisfies the following inequalities:
Z0 < M < 22. Using arguments similar to the ones already used in Case (a.1) it is
possible to show that ® (Rp, Ro, R?, ..., R®) = (M/2,M/2,0,...,0). Since Zo+y < M
we have that yo — % < ¥ — z,, whlchlmphenthatwemnﬁndm.*:}ﬂaudl that
H+£}ynand£—a>:t:u As before, we can assume that ” + £ < M because if

Yo = M the statement follows trivially as in Case (a.1). By Imma ' 9 (1} - s) IoM/2
and (% + E’) PyM /2 hold since [zo,yo] is a maximal interval of indifference for Rp.
Therefore, the allocation (,..i;!, — E,% +£,ﬂ....,ﬂ) contradicts the efficiency of ®.

Case (a.3): Assume that n = 2 and remember that we can suppose that M/n <
o < M. By symmetry, ® (R, Ry) = (M/2,M/2). We can also find £ > 0 such
that yp < z0 + €, To < 20 — &, (20 + ) FoM/2, and (2 — €) IoM /2. Therefore, the
allocation (zp — €, zo + £) contradicts the efficiency of ®.

Case (b): Its proof is omitted since follows an argument which is symmetric to
the one used to prove Case (a). n

Proof of Theorem 1: Let Ry € R, (M, n) be arbitrary. We have to show that Ro
is restricted-monotonic on © (Ro). Consider the following cases:

Case (1): Assume that M/n < p(Rg). Then, © (Ry) = [M/n,p(Ro)]. To show
that property (a) of Definition 8 holds, suppose first that M/n < z < y < p(Ro).
Then, by Lemma 1 (part (a)), we have yRoz. If ylox then, by Lemma 4 (part
(a)), there exists an interval [z, o) 2 [z,y] such that z¢ + yo > M and z'Iyyy for all
#' € [z9,Y0]. Assume now that z < M/n <y < p(Rp). Then, by Lemma 2 (part (a)),
we have that M/nRoz. Moreover, yRoM /n, by Lemma 1 (part (a)). Therefore, since
Ry is transitive we must have that yRoz. If yloz then, by Lemma 4 (part (a)), there
exists an interval [Zo, yo] 2 [z, y] such that zo+yo > M and z'Ipyp for all ' € [zo, Y.
To show that property (c) of Definition 8 holds, suppose that z € (E (Fo) ,ﬁ[ﬁq}}
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Then, M/n < p(Re) < = < P(Ro) which implies, by Lemma 1 (part (a)), that
zRop (Ro), and hence zlpP (Rp).

Case (2): Assume that p(Ro) < M/n < p(Ro). Then, © (Ro) = [p(Ro) P (R0)| -
To show that property (c) of Definition 8 holds, assume first that p(Rp) = M/n and
let = be any share such that p(Rp) < z < P(Ro). By Lemma 1 (part (a)) z Rop (Ro)
which implies that zJop (Ro). Assume now that p(Ro) < M/n < p(Rp). By Lemma
2 (part (a)) we have that -

= Rop (Ro) (16)
First, let z be any share such that p(Ro) < z < M/n < p(Rop). By Lemma 1 (part
(b)) zRoM/n and by condition (16) we have that zIop (Ro). Second, let z be any
share such that p (Ro) < M/n < z < P(Ro). By Lemma 1 (part (a)) zRoM/n and
by condition (16) we have that zlyp (Ry).

Case (3): Assume that B(Ro) < M/n. Then, © (Ro) = [p(Ro) , M/n|. The proof
that properties (b) and (c) of Definition 8 hold is symmetrical to that of Case (1),
using the respective parts (b)’s of Lemmata 1, 2, and 4.

The proof of Theorem 1 is completed by exhibiting a rule on the set of restricted-
monotonic preferences on 8, R8 (M, n), that satisfies the properties of strategy-
proofness, efficiency, and symmetry. We obtain such a rule by extending the uniform
allocation rule ¢ on the domain of single-plateaued preferences, R,, (M), to this
larger domain.

The ertended uniform rule on RS, (M,n), ¥ : RS, (M,n)" — Z (M), is defined
by the following algorithm: let R = (Ry,...,R,) € RE,(M,n)" be any profile of
restricted-monotonic preferences on 8.

Stage 0: Let R = (ﬁ],...,ﬂn) € Ry (M)" be any profile of single-plateaued
preferences such that [E{R.}j(R,]] = [E (E)j(.ﬁ()] for all i € N. Compute
ﬁ(ﬁ) and let S° be the set of agents receiving an amount on the interior of a
maximal interval of indifference for R; (the original preference), denoted by [z{,3}],
such that [af,4f] # [p(R:) P (R)]; that is,

o i (R) € (22,1?) where [z2,37] is a maximal interval
S‘°—.{teN| ofi&d?ﬁerenmforﬁimdg(ﬂi}ﬁxfaraﬂze[::?,y?] }

If S° = 0 then define ¥ (R) = % (R) and stop. If S° # @ then select any profile
R! = (R},...,R}) € RS, (M,n)" such that R} = R; for all i ¢ S° and for all i € S°

R! = Rion [0,47] and yPPlzforallz >3 M <Tp(R;) -
' | Rion [z,M] and 20P]z forall z < 2 if S p(R;))< M ~
Go to stage 1.

"Notice that the efficiency of 4 implies that if M < 3" p(R;) then ¥; (R) < p (R;) and therefore
¥) < p(R;). Symmetrically, if 3"p(R;) < M then p(R;) < #; (R) and therefore p(R;). The same
argument will apply also in all stages.




14

Now, for k> 1, and given that the algorithm has not stopped yet at stage k-1,
stage k is as follows.

Stage k: Given the preference profile R* = (R},..., R:) € RS, (M,n)", the out-
come of stage k-1, let R* = (R¥, .., R’;f € R,p (M)" be any profile of single-plateaued
preferences such that [E(Rf) ,ﬁ(ﬁ'f) = [E(Rf) ,}J(R? ] for all i € N. Compute
v (R*). 1 o (R*) = ¢ (R*?), define ¥(R) = ¥ (R*) and stop. Otherwise, let
S* be the set of agents receiving an amount on the interior of a maximal interval of
indifference for Rf, denoted by ::f,yf], such that :t:f,yf] # [E(R‘_") ,E(Rf)]; that

is,

S"={iEN| i (R*) € (zF,4¢) where [z},9}] is a maximal interval }

ofindiﬁereneeforfifmdg(ﬁ)ﬁmfornﬂzé [rf,yf]

If S* = 0 then define ¥ (R) = ¢ (R") and stop. If S* # @ then select any profile
R = (R¥*, .. RE*) € RS, (M,n)" such that R¥*! = R} for all i ¢ S* and for
alli € S*

lﬁ‘“={ Rf on D,yf] and y* Pz for all z > y¥ EMEEE(R;)

R} on [z}, M] and z}Pf 'z forallz <z} if Tp(RE) <M

Go to stage k+1.

The algorithm stops after at most n stages. This is because the sets S* only
contain players whose stage k proposed shares are not maximal. Hence, for all K’ > 2

K-1
s¥n (U S") =0.
k=0

Note that the rule ¥ satisfies strategy-proofness and symmetry. To show that it
satisfies efficiency, let R = (R,,..., R,) € R®, (M,n)" be arbitrary and consider the
following cases:

Case (1): Assume that Y p(R;) < M < Y P(R;). Then, efficiency is clearly
satisfied because v; (R°) € [p(R:),p(R)| for all i € N implies that S° = @ and the
process stops at stage 0 after setting ¥ (R) = ¢ (R“). Therefore, p(R;)1;¥; (R) for
all i € N, which means that V¥ is efficient.

Case (2): Assume that M < Y p(R;). Then, it is easy to show that ¥;(R) <
p(R;) for all i € N. Let S be the subset of agents who are rationed; that is,

S={ieN|¥%(R)<pR)}.

If S = 0, then $p(R;) = M and ¥ (R) = p(R,) for all i € N, in which case,
the efficiency of ¥ follows. Therefore, suppose S # @ and assume that ¥ violates
efficiency at profile R; that is, there exist a feasible allocation r = (ry,..,m,) € Z (M)
and j € N such that:

r:R;¥, (R) for all i € N and
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riP;¥; (R). (17)

However, (17) and the definition of ¥ imply that ¥; (R) < r;j. Therefore, there exists
k € N such that ¥, (R) > ry, since ¥ (R) € Z (M). Then ¥, (R) Iyrx. By definition
of ¥ we have that p(R;) = ¥, (R) for all i € N such that p(R;) < M/n and

¥; (R) = ¥ (R), (18)

since ¥; (R) # p(R;) and ¥y (R) # p(Ry). If ¥4 (R) + 7 > M, then ¥, (R) > M/2
and by (18) we have that ®;(R) > M/2 which implies that ¥ (R) ¢ Z (M), a
contradiction. Assume that ¥, (R) + ry < M. First, ry Ry ¥ (R) and rp < ¥ (R)
imply that ryJ ¥y (R). Therefore, by Definition 8, there exists a maximal interval of
indifference for Ry, call it [zx, yx], such that ¥, (R) € [z, y]. But then, the definition
of ¥ implies that ry € [zx,ys], a contradiction.

Case (3): Assume that "7 (R;) < M. Then, an argument symmetric to the one
used in Case (2) proves that ¥ is efficient. |

4 Concluding Remarks

We finish this paper with two remarks. First, we show how to obtain Ching and
Serizawa [9] result as an implication of our Theorem. While we have considered M
as an exogenous data, they formulate the division problem for all possible values of
M by letting rules depend not only on preferences profiles but also on all possible
amounts of the good to be allocated. This distinction has important consequences
for the maximality problem since their approach implies that preferences have to be
defined over all positive shares, and consequently the same domain of preferences has
to be maximal for all values of M, while our approach allows to find the maximal
domain of preferences (on [0, M]) for each value M. Therefore, to formulate the
division problem in their setting, assume now that every agent : € N has a continuous
preference ordering over the interval [0,00) and denote by R (o0) the set of all these
preference orderings.

A rule on U C R (o0) and (0, 00) is a function > : U™ x (0, 00) — R" such that
S ®2(R, M) = M for all (R, M) € U™ x (0,00).

Consider the natural extensions of strategy-proofness, efficiency, and symmetry to
this new setting where rules are defined on U/ and (0, 00).® Denote them by sp (c0),
eff (o), and sy (c0).

Definition below adapts our concept of maximal domain of preferences to their
setting.

Definition 11 A set R,, of preferences is a mazimal (infinite) domain for a list of
properties if: (1) Ry C R (00); (2) there ezists a rule on R, and [0,00) satisfying
the properties; and (8) there is no rule on R' and [0, oo) satisfying the same properties
such that R,, C R' C R (00).

8This means that we have to replace, in Definitions 1, 2, and 3, the expression “for all R € U™
by the expression “for all (R, M) € U™ x (0,00)".
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Now, Ching and Serizawa [9] result can be stated (and proved as a Corollary of
our Theorem) as follows.

Theorem 2 (Ching-Serizawa) The set of single-plateaued preferences, Ry (00), is
the unique mazimal (infinite) domain including single-peaked preferences for sp (o),
ef 1 (o), and sy (o).

Proof. Let R, be a domain such that there is a rule #* on R, and (0, co) satisfying
sp(c0), ef f (00), and sy (co). Assume also that R, (00) € R,. Then, for each M €
(0,00), we have that @5 : Rs (M)" — Z (M) satisfies strategy-proofness, symmetry
and efficiency, where R, (M) is the restriction to [0, M] of preferences in R, and after
setting @ (R) = & (R, M). Then, by Theorem 1, R, (M) = RS, (M, n) for every
M € (0,00). Since this is true for every M we have that R, = HQDRfM(M,n]. Fi-

nally, one sees immediately that R, (c0) = Mno'R.fm(M, n). Hence R, = R, (00). W
>

Second, the interval © (R;) is intimately related with “option” sets, where given
a rule ® on U and a preference R; € U we define the option set left by R; at ® as

o* (R) = {:ﬂ € [0, M] | 3R_; € U™! such that &; (R;,R_;) = ::}.

This is not surprising, since option sets also play a fundamental role to describe
maximal domains in voting environments. The main two ideas are the following.
Given a preference R;, alternatives at the left (right) of the top and outside the
option set have to be worse than the smallest (largest) alternative in the option set.
Moreover, the preference R; has to be single-peaked on the option set.

It is easy to show here that, given a preference R; € RS, (M,n) and a strategy-
proof, efficient and symmetric rule on RS, (M, n), the relationship between © (R;)
and o® (R;) is as follows. Suppose that R; is such that M/n does not belong to
an indifference interval, then © (R;) = ¢®(R;). However, if M/n belongs to an
indifference interval, then o® (R;) = © (R;) U [zo, w], where [zp, %] is the maximal
interval of indifference for R; that contains M/n.
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