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Abstract

In this paper we develop exact relationships between empirical Fisher indexes and
their theoretical Malmquist and Konus counterparts. We begin by using implicit
Malmaquist price and price recovery indexes to establish exact relationships between
Malmquist quantity and productivity indexes and Fisher quantity and productivity
indexes. We then show that Malmquist quantity and productivity indexes and Fisher
price and price recovery indexes “almost” satisfy the product test with the relevant
value change, and we derive a quantity mix function that ensures satisfaction of the
product test. We next use implicit Konus quantity and productivity indexes to establish
exact relationships between Konus price and price recovery indexes and Fisher price
and price recovery indexes. We then show that KonuUs price and price recovery
indexes and Fisher quantity and productivity indexes “almost” satisfy the product test
with the relevant value change, we derive a price mix function that ensures satisfaction
of the product test, and we show that this price mix function differs fundamentally from
the quantity mix function relating Malmquist and Fisher indexes.
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Exact Relationships between Fisher Indexes and Theoretical Indexes

1. Introduction

Theoretical Malmquist quantity and productivity indexes differ from empirical
Fisher quantity and productivity indexes. This matters because Malmquist indexes can
be estimated using empirical data, and empirical Malmquist studies are proliferating.
Ouir first objective is to relate theoretical Malmquist quantity and productivity indexes
to empirical Fisher quantity and productivity indexes, and to provide economically
meaningful expressions for the relationships. These expressions also enable
Malmquist quantity and productivity indexes and Fisher price and price recovery
indexes to satisfy the product test with the relevant value change. The key ingredients
in this analysis are implicit Malmquist price and price recovery indexes.

Similarly, theoretical Konus price and price recovery indexes differ from
empirical Fisher price and price recovery indexes. This also matters, because Konus
indexes also can be estimated using empirical data, although to date this has not
become a popular exercise. Nonetheless our second objective is to relate theoretical
Konus price and price recovery indexes to empirical Fisher price and price recovery
indexes, and to provide (fundamentally different) economically meaningful
expressions for the relationships. These expressions also enable Konus price and
price recovery indexes and Fisher quantity and productivity indexes to satisfy the
product test with the relevant value change. The key ingredients in this analysis are
implicit Konus quantity and productivity indexes.

The literature relating theoretical and empirical index numbers has taken two
approaches. One approach seeks restrictions on the structure of production
technology, in conjunction with a form of optimizing behavior, that equate an empirical
index with a corresponding theoretical index. Diewert (1992) follows this approach to
provide “a strong economic justification” for the use of Fisher quantity and productivity
indexes. A second approach imposes relatively weak regularity conditions on the
structure of production technology, sufficient for duality to hold, augmented with
Mahler inequalities, to establish approximate relationships between empirical and
theoretical indexes. Balk (1998) makes extensive use of this approach.

Our paper fits into neither category. Our analysis begins with implicit theoretical
price and quantity indexes. We use these implicit indexes to derive functions that link
Fisher indexes with Malmquist and Konus indexes, and that guarantee satisfaction of
the analogous product tests. We provide economic intuition behind the content of
these functions, which characterize variation in the mix of choice variables, either
quantities or prices.*

Our paper unfolds as follows. In Section 2 we provide some background to
motivate our analysis relating empirical and theoretical index numbers. In Section 3
we use implicit Malmquist price and price recovery indexes to relate Fisher quantity
and productivity indexes to Malmquist quantity and productivity indexes. We also show
that Malmquist quantity and productivity indexes and Fisher price and price recovery
indexes “almost” satisfy the product test with the relevant value change, and we derive
and provide economic interpretations of quantity mix functions that guarantee
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satisfaction of the product test. In Section 4 we use implicit Konus quantity and
productivity indexes to relate Fisher price and price recovery indexes to Konus price
and price recovery indexes. We also show that Konus price and price recovery indexes
and Fisher quantity and productivity indexes “almost” satisfy the product test with the
relevant value change, we derive price mix functions that guarantee satisfaction of the
product test, and we show that these functions differ fundamentally from the analogous
functions relating Malmquist and Fisher indexes. Section 5 concludes.

2. Background

Let y'€ RM and x' € RY be output and input quantity vectors with corresponding
price vectors p' € RM, and w' € RY,, and let revenue R' = py!, cost C' = w''x', and
profitability (or cost recovery) IT' = RY/C", all for two time periods, a base period t=0 and
a comparison period t=1. Let the technology T' = {(y,x): x can produce y in period t},
the convex output set P'(x) = {y: (y,x) € T'} with frontier IP'(x) = {y: y € P'(x), Ay & P'(x),
A > 1}, and the convex input set L'(y) = {x: (x,y) € T'} with frontier IL'(y) = {x: x € L(y),
Ax & L'(y), A < 1}. Finally let the revenue frontier r'(x,p) = max,{p'y: y € P'(x)} = R" and

the cost frontier c'(y,w) = min{w'x: x€L'(y)} < C'.

We know from Balk (1998) that our best empirical and theoretical quantity and
productivity indexes are related by

YE = YM(x1,x°,y1,y°)
Xe = Xu(y',y°,x" x°)

Yr YmEx x%yty%)
Xp  Xm(yly®x1x0)’

(1)

where Yg, Xrp and Yg/Xg are Fisher output quantity, input quantity and productivity
indexes, and Yu(x'.x%y".y?), Xu(y'.y°.x'x%) and Yu(x' X%y .y Xu(y'y’x' x°) are
Malmquist output quantity, input quantity and productivity indexes in geometric mean
form.?

It follows that®
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(2)

Results (1) and (2) are based on Mahler inequalities, which use distance
functions to bound the allocative efficiencies of quantity vectors [r'(x,p) = p'y/D%(x,y)
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Vp,y,x and c'(y,w) £ w'x/D(y,x) Yw,x,y], with an assumption of within-period allocative
efficiency [p"y/DL(y',x") = r'(x',p") and w'x/Di(x%y") = c'(y',w'), t=0,1], where Di(x,y) =
min{$>0: y/¢ € P'(x)} = 1 VyEP'(x) are output distance functions and D{(y,x) = max{6>0:
x/6 € L'(y)} = 1 VxEL(y) are input distance functions.

We also know that our best empirical and theoretical price and price recovery
indexes are related by

Pr = Px(x" x°,p",p°)
We = Wi(y'y°w',w®)

PF PK(Xl’XO’pl‘pO)
WF = WK(yl’yo’wl‘wo)’

3)

where P, W and Pg/WE are Fisher output price, input price and price recovery
indexes, and Px(x",x°,p",p%), Wk(y',y°w' w®) and Px(x".x°p",p°)/Wk(y"y°,w' wP) are
Konus output price, input price and price recovery indexes.*

It follows that
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(4)

Results (3) and (4) are not based on Mahler inequalities. These results are
based on inequalities having similar form [r'(x,p) = p'y Vp,y,x and c'(y,w) < w'x Yw,x,y],
but they use revenue and cost frontiers to bound the overall efficiencies, and the
efficiencies being bounded are those of price vectors rather than quantity vectors.

In Sections 3 and 4 we derive exact relationships between empirical and
theoretical index numbers, and we provide economic interpretations of the mix
functions that convert the approximations to equalities. We also show that the
economic content of the mix functions that convert the approximations in (1) and (2)
to equalities coincide, and they differ fundamentally from the economic content of the
mix functions that convert the approximations in (3) and (4) to equalities, which also
coincide. The quantity mix functions in Section 3, but not the price mix functions in
Section 4, are ratio analogues to the product mix and resource mix effects in Grifell-
Tatjé and Lovell (1999;1182,1184).

The starting points in our analyses are implicit Malmquist output and input price
indexes in Section 3, and implicit Konus output and input quantity indexes in Section
4. Neither set of implicit indexes satisfies the fundamental homogeneity property in
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prices or quantities, respectively (Diewert (1981;174,176)). However we do not treat
these implicit indexes as price or quantity indexes; we use them for other purposes, to
convert the economic approximations in (1) and (3) to exact relationships, which in
turn eliminates the product test gaps in (2) and (4), and to provide economic
interpretations of the gaps they eliminate.

3. Implicit Malmquist Price and Price Recovery Indexes

In this section we exploit implicit Malmquist output price, input price and price
recovery indexes. These indexes enable us to derive exact relationships between
Fisher and Malmquist output quantity, input quantity and productivity indexes, and
exact decompositions of revenue change, cost change and profitability change.

3.1 The Output Side

A base period implicit Malmquist output price index is

0 (0 1 0yl O0y o > /R

PIM(X ,p ,p ,y ’y )_ Y&(Xo’yl‘YO)

_ pTy/De Oy
pOTyO/Dg(XO,yO),

(5)

in which Y3(°y"y%) = DI(x°,y")/DY(x°,y°) is a base period Malmquist output quantity
index. Multiplying and dividing by p°Ty'/D2(x°,y") yields

p°T[y?/DJ(x%yh)]
p°T[y%/DJ(x%,y0)]

Yy,

PI%(x°p,p%y",Y°) = Pp x

= Pex Yy (x0yLy0)

= Pp x YMy (°,p%y"y°), (6)
in which Pp = p'Ty'/p®Ty' is a Paasche output price index, Y. = p®Ty'/p°"y° is a
Laspeyres output quantity index, and YME(X%,p%y".y°) =

[Ty /DYy /P Ty/De(x°y%)] is a base period Malmquist output quantity mix
function, so named because it is based on output distance functions that scale output
vectors y' and y° to the base period frontier IP°(x°), thereby eliminating any magnitude
difference between them, leaving only difference in their mix. This function is the ratio
of the revenue generated by y'/D9(x°,y") to that generated by y°/D2(x°,y°) when both
are valued at base period output prices. The second equality in (6) provides an exact
decomposition of a base period implicit Malmquist output price index. The third
equality demonstrates that the base period Malmquist output quantity mix function is



the ratio of a Laspeyres output quantity index to a base period Malmquist output
quantity index. In the presence of base period prices we expect normalized base
period quantities y°/DY(x°,y°) to generate at least as much revenue as normalized
comparison period quantities y'/D2(x°,y"), and so we expect YM(x°,p%y".y°) < 1, and

thus Y. = YS(<°y".y0).

Revenue change is

Rl
=5 = W (yLY%) x PIR(x"p"p"y ")
=Yg (<y",y°) x Pe] x YMy(x°,p°y"y°), (7)

which uses (6) to provide an exact decomposition of revenue change, showing that
the product of a base period Malmquist output quantity index, a Paasche output price
index, and a base period Malmquist output quantity mix function satisfies the product
test with revenue change.

The base period output quantity mix function has a value of unity if M=1, or if
M>1 and y' = Ay°, A>0, which effectively converts the problem to a single output
problem. If YM%(x°,p%y",y%) = 1, PI& (X% p",p%y",¥°) = Pp and Y. = Y3 (x°,y',y°) in (6) and
R/R% = y3(x°,y",y°) x Pp in (7), so that, under either of the stipulated conditions, a
base period implicit Malmquist output price index is equal to a Paasche output price
index, a base period Malmquist output quantity index is equal to a Laspeyres output
quantity index, and the product of a base period Malmquist output quantity index and
a Paasche output price index satisfies the product test with revenue change.

If neither of these conditions holds, YM%(x°,p%y',y°) < 1. Base period output

allocative efficiency (but not necessarily technical efficiency) of y° relative to p° [i.e.,
p°TyDY(x°,y°) = r°(x%,p°) in (8)] is sufficient for YMY(x°,p%y',y°) < 1, and thus for
PIS (P p%y" YY) < Pe, YL < YS(X%y'y?), and R'/R® < Y4(x°y'y°) x Pp. A less
restrictive sufficient condition for all three inequalities requires only that y° be more
allocatively efficient than y' relative to (x°p°) on base period technology [i.e.,
p°Ty'/DO(x%y") < pPTyUD2(x°,y°) = r°(x°,p°) in (6)]. This assumption is weaker than one
of base period output allocative efficiency (e.g., Balk (1998)) or of base period revenue
maximization (e.g., Diewert (1981)).

A comparison period implicit Malmquist output price index is

RI/RO
PIL (x' o' p®v! \O) =
M( PLPLY LY ) Y%/[(Xl,yl;yo)
_pTyt/Daxtyh
p°Ty%/Dg (xty0)’




in which Y& (x"y",y°) = D(x",y")/Di(x",y°) is a comparison period Malmquist output
quantity index. Multiplying and dividing by p'Ty*/D(x",y°) yields

1T, 1 1,11
1! nt 0yl O) = P~ [y /Dox"y7)]
PIMOCRLPEY LYY = PL X im0 b3 0]
_ Yp
=P iy
=P x YMy(x",p"y"y°), (9)
in which P. = p"y%p°"y° is a Laspeyres output price index, Yp = p"Ty'/p'y° is a
Paasche output quantity index, and YMEL(x'p'y"y0) =

"y /DE(x"y")p"Ty/DL(x",y%)] is a comparison period Malmquist output quantity mix
function that is the ratio of the revenue generated by y'/D3(x",y") to that generated by
y’/DL(x",y%) when both are valued at comparison period output prices. The second
equality in (9) provides an exact decomposition of a comparison period implicit
Malmquist output price index. The third equality shows that the comparison period
Malmquist output quantity mix function is the ratio of a Paasche output quantity index
to a comparison period Malmquist output quantity index. In the presence of
comparison period prices we expect normalized comparison period quantities
y'/DL(x",y") to generate at least as much revenue as normalized base period quantities
y'/DL(x",y°), and so we expect YML(x',p',y',y°) = 1, and thus Yp = YL (x",y",y°).

Revenue change is

R1
=5 = Yu(x'yLy%) x P (x",p".p"y"y")

= [a(x"y"y°) x P x YMy (x,p"y "), (10)

which provides a second exact decomposition of revenue change, in which the product
of a comparison period Malmquist output quantity index, a Laspeyres output price
index, and a comparison period Malmquist output quantity mix function also satisfies
the product test with revenue change.

The comparison period output quantity mix function has a value of unity if M=1,
or if M>1 and y' = Ay°, A>0. Under either of these conditions a comparison period
implicit Malmquist output price index is equal to a Laspeyres output price index, a
comparison period Malmquist output quantity index is equal to a Paasche output
quantity index; and the product of a comparison period Malmquist output quantity
index and a Laspeyres output price index satisfies the product test with revenue
change.



If neither of these conditions holds, comparison period output allocative
efficiency of y' relative to p' [i.e., py'/DL(x",y") = r'(x",p") in (9)] is sufficient for
YML(x",p"y",y°%) > 1, and thus for Pl (x",p",p%y".¥°) > PL, Yp > Y4 (x'y"y%), and R"/R°
> YL(x",y'¥°) x PL. A less restrictive sufficient condition for all three inequalities
requires only that y' be more allocatively efficient than y° relative to (x',p') on
comparison period technology [i.e., p"y*/D(x",y%) < p"y'/DL(x",y") = r'(x",p") in (9)].

Figure 1 illustrates the base period and comparison period output quantity mix
functions for M=2. Convexity of the output sets guarantees that
YMy[X°,p°y DS (x%y "),y DS (x°y°)] < 1 and that YM[x',p",y"/DE(X"y").y/DE(X"y%)] =
1. Within period allocative efficiency is sufficient but not necessary; all that is required
is that y°/DJ(x°,y°) be more allocatively efficient than y'/D2(x°,y") relative to p°, and that
y'/DL(x",y") be more allocatively efficient than y°/DL(x",y°) relative to p'.

Insert Figure 1 about here

An implicit Malmquist output price index is the geometric mean of (6) and (9),
and so

PIM(X1:X0,p1’pO:y17yO) = PF X YMM(X1’X0=p1’pO’y1’yO)
YF
Ym(x1x0yty0)

= Pr x (11)

in which Pr=[PpxP_]"? is a Fisher output price index, Yr = [Y.xYp]" is a Fisher output
quantity index, Ym(x',x%y",y%) = [YS(x°, 1, v®) 0 Y (xL, y1, y°)]1Y/2 is a Malmquist output
quantity index, and the Malmquist output quantity mix function YMy(x",x°,p",p%y",y°)
= [YMy(x°p%y"y%) x YMy(x',p"y ",y

It follows from (11) that
YF = YM(X1’X0’y1’y0) X YMM(X1’XO’p1=pO’y1’yO)’ (12)

which provides an exact relationship between the empirical Fisher output quantity
index and the theoretical Malmquist output quantity index.

Revenue change is the geometric mean of (7) and (10), and so

1

R
5 = (< X7y "y%) x Pel x YMy(x' x"p",p%y"y°), (13)

which provides an exact decomposition of revenue change.

The output quantity mix function has a value of unity if M=1, or if y' = Ay°, A>0.
Under either of these conditions Pl (x",x%,p',p°y",y°) = Prin (11), Yr = Yy (X' X%y ,y°)



in (12), and R'/R® = Yy (x",x°,y",y%) x Pg in (13). If neither of these conditions holds,
YMpy(x",x%,p",p%y",y°) = 1 provides an economically meaningful characterization of the
differences Ply(x",x°,p",p%y"y%) = Prin (11), Yr = Yu(x" x°,y",y®) in (12), and R'/R° =
Yau (X' X%y",y°) x Prin (13).

3.2 The Input Side

We exploit the implicit Malmquist input price index in a similar manner, using
the same strategies and the same quantity mix logic. The base period implicit
Malmquist input price index is WIS (y°,w' w?x"'x%) = (C'/C)/X%(y°x"' x°) and the
comparison period implicit Malmquist input price index is WIL(y",w'w°x' x%) =
(C'1CyxL(y' x" x°). We omit all intermediate steps and arrive at the geometric mean
of the two, the implicit Malmquist input price index

wOT[x1/D{ (v x1)]
wOT[x0/D? (y0 x0)]

i

1T[y1 /pleyl x1 1/2
Win(y"y?w' w’x",x%) = We x wTxt/Dj (y'x )]]

wiT[x/D] (v1x0)]

Xp

= WEg x
P XmyLy®x1x0)

= We x XMy (y'y%w' w0 x" x), (14)

in which the Fisher input price index W = [WpxW,_]"?, the Fisher input quantity index
X¢ = [XxXp]"?, and the Malmquist input quantity index Xy (y',y°.x",x%) = [X%(y°,x",x°)
x XL (y' x' x%]"2. The Malmquist input quantity mix function XMy (y',y°,w',w° x" x°) is
the geometric mean of a base period Malmquist input quantity mix function that is the
ratio of the cost incurred at x'/DY(y°,x") to that at x%/D?(y°,x°) when both are valued at
base period input prices, and a comparison period Malmquist input quantity mix
function that is the ratio of the cost incurred at x'/D}(y’,x") to that at xX’/D}(y",x°) when
both are valued at comparison period input prices. The second equality in (14)
provides an exact decomposition of the implicit Malmquist input price index. The third
equality shows that the Malmquist input quantity mix function is the ratio of a Fisher
input quantity index to a Malmquist input quantity index, from which it follows that

Xg = XM(y1,y0,x1,x°) X XMM(y1,y°,w1,W°,x1,x°), (15)

which provides an exact relationship between an empirical Fisher input quantity index
and a theoretical Malmquist input quantity index.

Since cost change can be expressed as C'/C° = X¢ x W, it follows from (15)
that

Cl
0 = [XM(y1,y°,x1,x0) x WE] x XMM(y1,y°,w1,w°,x1,x°), (16)

which provides an exact decomposition of cost change.
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The input quantity mix function has a value of unity if N=1, or if x' = ux®, u>0,
which effectively converts the problem to a single input problem. Under either of these
conditions Wiy (y",y°,w' w® x" x%) = Wg in (14), Xe = Xp(y",y°.x",x%) in (15),and C"/C° =
Xm(yy°.x'x%) x WE in (16). If neither of these conditions holds, we exploit the
expectation that XMy(y',y°,w',w° x" x°) = 1, even in the absence of within-period input
allocative efficiency, which generates Wiy (y',yo,w'w?x' x%) = We in (14), X =
Xm(y"y%.x",x%) in (15), and C'/C% = Xy (y',y°,x" x°) x Wk in (16).

Figure 2 illustrates the base period and comparison period input quantity mix
functions with N=2. Convexity of the input sets guarantees that
XMYTY? w! wl x' /DO (y°,x"),x/DO (y° x%)] > 1 and that
XMYTy w wl x' /Dy x"),xDL(y" x°)] = 1. As with an output orientation, within period
allocative efficiency is sufficient, but not necessary, for XMy (y",y°,w' w® x' x%) = 1.

Insert Figure 2 about here

3.3 Combining the Output Side and the Input Side

We ignore base period and comparison period indexes and proceed directly to
an implicit Malmquist price recovery index. The ratio of (11) and (14) is

PIM(XlIXO:pl;pO:yl,YO) PF
=W X M 1' O’Xllxo, 1; O;Wl;WO ; 17
Wipm(ytyowlwx1,x0) Wg m(yy p-p ) (17)

in which My (1, y0, x1, %0, pt, p%, wl, w?) =
YMpy (X' X%, 0", p%y " YO XMy (y', v w' WP x" x°) is a Malmquist quantity mix function that
provides an economic characterization of the gap, if any, between Pg/Wr and
PIy(x" X%, 0" p%y YO Wiy yow' wlx' x%).  From (11) - (13) we expect
YMy (X' x%,p",p%y".y°) = 1, and from (14) — (16) we expect XMy (y',y°,w' w® x' x°) = 1.
Consequently we expect My (v1,y°, x1,x% pt, p°, wtl,w®) = 1, in which case a Fisher
price recovery index is approximately equal to an implicit Malmquist price recovery
index. A unitary ratio would require equality between the output quantity mix function
and the input quantity mix function, a sufficient but not necessary condition for which
is y' =ay°, A>0 and x" = ux’, u>0, which converts a multiple output, multiple input
problem to a single output, single input problem that does not require index numbers
of either sort.

An expression for productivity change is given by the ratio of (12) and (15), and

Yr _ YmME X%yhy%)
Xp  Xm(yty?x1x%)

x My (y",y%, x%, %% pt, p%, wi, w?), (18)



which provides an exact relationship between a Fisher productivity index and a
Malmquist productivity index, with the Malmquist quantity mix function providing an
economic interpretation of the (presumably small) gap between the two.

An expression for profitability change is given by the ratio of (13) and (16), and

0" _ ymE1xyly®) Pg
D_O = [XM(yl y0,x1,x0) x W_F] B MM(ylr yo'Xl'XO' pl’ polw1’wo), (19)

and if the Malmquist quantity mix function is approximately unity a Malmquist
productivity index and a Fisher price recovery index approximately satisfy the product
test with profitability change.’

In this section we have used implicit Malmquist price and price recovery indexes
to relate Malmquist quantity and productivity indexes to Fisher quantity and
productivity indexes. The important findings are contained in (11), (14) and (17); (12),
(15) and (18); and (13), (16) and (19). The first set of results relates implicit theoretical
price and price recovery indexes to their explicit empirical counterparts, and
establishes the foundations for the second and third sets of results. (12), (15) and (18)
clarify the sense in which Fisher quantity and productivity indexes and Malmquist
quantity and productivity indexes are approximately equal. (13), (16) and (19) clarify
the sense in which Malmquist quantity and productivity indexes approximately satisfy
the relevant product test with Fisher price and price recovery indexes. Each of these
sets of results depends fundamentally on Malmquist output and input quantity mix
functions, which have clear economic interpretations. It is worth emphasizing that the
quantity mix functions compare the allocative efficiencies of pairs of quantity vectors,
which are the choice variables in the exercises.

(13), (16) and (19) warrant special emphasis from an empirical perspective,
because of their decomposability properties. Yy (X'.x%y"y?), Xm(y'.y°.x'x°) and
Y (X X2y YO Xum(y'y?.x' x°) decompose into the product of economic drivers of
productivity change: technical change, technical efficiency change, mix efficiency
change and scale efficiency change (O’Donnell (2012)). In contrast, P, Wr and Pr/Wg
decompose into contributions of individual output and input price changes (Balk
(2004)). These two features enable a decomposition of value (revenue, cost and
profitability) change into the economic drivers of quantity change and the individual
price drivers of price change.

4. Implicit Koniis Quantity and Productivity Indexes

In this section we exploit implicit Konus output quantity, input quantity and
productivity indexes. These indexes lead us to exact relationships between Fisher and
Malmquist output price, input price and price recovery indexes, and to exact
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decompositions of revenue change, cost change and profitability change. Both sets of
results differ from analogous results in Section 3.

4.1 The Output Side

We begin with a base period implicit Konus output quantity index

Rl/RO
PR(x%,p1,p%)

YI2(x%p"p%y'y%)

_ Pyt /ro&%ph
p®Ty0/r0(x0,p0)’

(20)

in which P2(x°,p",p% = r°(x°,p")/r°(x°,p°) is a base period Koniis output price index.
Multiplying and dividing by p'"y%/r°(x°,p") yields

ptTy%/r0(x%p?)
pOTy0/r0(x0,p0)

YIZ(x%p"p%y"y%) = Yp x

\% PL
P%(x%,p1,p?)

= Yp x PMY(x",y°,p",p), (21)
in which Yp = p'y'/p""y° is a Paasche output quantity index, P. = p'"y*/p°y% is a
Laspeyres output price index, and PMZ(x°,y%,p",p°) = [y*"p ' /r°(x°,p /y %/ °(x°,p°)] is
a base period KonuUs output price mix function, so named because it is a function of
revenue functions that coincide apart from their output price vectors. This function is
the ratio of the revenue generated by y0 at normalized comparison period output prices
p'/r°(x°,p") to that generated by y° at normalized base period output prices p%r’(x°,p°).
The two normalized price vectors differ only in their output price mix. An alternative
interpretation of the base period Konus output price mix function is that it is the ratio
of two revenue efficiencies, both with base period technology and quantity vectors but
with different output price vectors.

The second equality in (21) provides an exact decomposition of a base period
implicit Konus output quantity index. The third equality demonstrates that the base
period Konus output mix function is the ratio of a Laspeyres output price index and a
base period Konus output price index. This mix function is bounded above by unity if
y° is revenue efficient relative to (x°,p°) on base period technology [i.e., p°Ty° = r°(x°,p°)
in (21)], or if y° is more revenue efficient relative to (x°,p°) than to (x°,p") on base period
technology [i.e., r°(x%,p% = p°Ty/r°(x%,p°% = p'Ty/r°(x%,p") in (21)]. In either case P, =
P2(x°,p",p% and YIZ(x°p',p°y"y0) = Ye. YIZ(X®,p'.p%Y".¥°) = Yp if either M=1 or p' =
Ap°%, >0, which essentially converts the problem to a single input problem. These
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bounds do not require base period revenue maximizing behavior, or even base period
allocative efficiency.

Revenue change is

Rl
=5 = POCpp°) x YIR(C.p' Py y?)
= [FR(x",p",p°) x Ye] x PMR(x°y’,p",p%), (22)

which states that the product of a base period Konus output price index, a Paasche
output quantity index and a base period Konus output price mix function satisfies the
product test with R'/R°. As above we expect R'/R? < P2(x°,p',p°) x Yp. However if
either M=1 or p" = Ap°, 2>0, (21) and (22) collapse to YIZ(x°,p",p%y",¥°) = Yp and R"/R°
= P2(x°,p",p°) x Yp, in which case a base period implicit Koniis output quantity index is
equal to a Paasche output quantity index, and consequently a Konus output price
index and a Paasche output quantity index satisfy the product test with R"/R°.

We now sketch the results of a comparison period implicit Konus output quantity
index. Following the same procedures as above, after multiplying and dividing by
p’Ty'/r'(x",p% we have

110y 0y — -7
YRRy LY = 51 d o ooy
lepl/l"l(Xl,pl)

=Y
L X YAITpO/r1 (x1 pO)

\% Pp
=Y Xx—/———
Pk (x1,p1,p?)

= YL x PMg(x"y",p".p°), (23)
in which Y. = p®Ty'/p°"y? is a Laspeyres output quantity index, Pp = y''p'/y'"p° is a
Paasche output price index, and Pi(x",p",p%) = r'(x",p")/r'(x",p°) is a comparison period
Konus output price index. The comparison period Konus output price mix function
PML(x"y",p",p°% is the ratio of the revenue efficiency of two output price vectors, given
comparison period technology and quantity vectors. If y1 is more revenue efficient
relative to (x'p') than to (x',p° on comparison period technology, then
PME(x"y',p",p% = 1, YIX(x",y'y%) = YL and Pp = PL(x",p",p°).

Revenue change is

Rl

—5 = BOpp%) x YIR(<p"p%yy°)
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= [Pg(x",p",p°) x Y x PMg(x",y',p',p%), (24)

which states that the product of a comparison period Konus output price index, a
Laspeyres output quantity index and a comparison period Konus output price mix
function satisfies the product test with R'/R°. Under the conditions above, R'/R°® =
PE(x",p",p°) x YL. If either M=1 or p" = Ap°, 1>0, RY/R? = PL(x",p",p°) x YL.

Figure 3 illustrates the base period and comparison period output price mix
functions for M=2. It is not necessary that y° be revenue efficient relative to (x°,p°) on
base period technology; all that is required is that y° be more revenue efficient relative
to (x°,p°) than to (x°,p") on base period technology. A similar remark applies to y'.

Insert Figure 3 about here
The geometric mean of (21) and (23) is an implicit Konus output quantity index
YIg(x'x%p"p%y"y%) = Y x [PMR(x°,y°, p, p°) O PMi(x*, y*, p*, p°)]*/2

Pp
X
pK(Xl’XO’pl’pO)

=YF

= YF X PMK(Xl, XO, yl, yO; pl; po)a (25)

which states that an implicit Konus output quantity index is the product of a Fisher
output quantity index and a Konus output price mix function. Because one component
of the output price mix function is bounded above by unity and the other is bounded
below by unity we expect Yl (x",x°,p",p%y".y°) = Ye.

It follows from the second and third equalities in (25) that
Pr = Pc(x'x",p",p°) x PMg(x",x%, y%,y°, p*, p°), (26)

which enables us to calculate the gap between the theoretical and empirical output
price indexes.

The geometric mean of (22) and (24) yields the expression for revenue change

1

R
=5 = [P x,p".p%) x Yol x PMic(x!, X%, 1, y°, b1, p°), 27)

which states that a Konus output price index and a Fisher output quantity index

approximately satisfy the product test with R'/R°, the approximation becoming an
equality if either M=1 or p' = Ap°, A>0.
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4.2 The Input Side

We now consider the implicit Konus input quantity index. The base period
implicit Konis input quantity index is XI2(y%,w',w° x" x%) = (C"/C)y/wW2(y°,w' w®) and the
comparison period implicit Konilis input quantity index is XIk(y'w'w’x'x%) =
(C'/CywWi(y' w',w°). The geometric mean of the two, the implicit Konis input quantity
index, is

XIK(y1,yO,W1,WO,X1,XO) = Xg x [WMZ(y?, x% w!, w®) QWME(y!, xt, wt, w®)]*/2

= Xg x WMk (y1,y9, x4, x0%, wt, w?), (28)

in which the Konis input price mix function WM (y?1,y?, x1,x% w?, w®) measures the
gap between Xl (y',y°,w' w°x"x°) and Xg, and is defined analogously to the output
price mix function in (25).

From the second and third equalities in (28)
We = Wi (y'yo,w' w) x WM (v?,v9, 3, x0, wl, w?), (29)

which provides an exact relationship between empirical Fisher and theoretical Konus
input price indexes.

Cost change is

Cl

C_O = [WK(y1’y0aW1’W0) X XF] X WMK(yl, yO;Xl;XOJ Wl) WO)' (30)
The base period and comparison period input price mix functions are illustrated

in Figure 4, in which cost efficiency of x° and x' is not required; all that is required is

that x° be more cost efficient relative to (y°,w°) than to (y’,w') on base period

technology, and that x' be more cost efficient relative to (y',w') than to (y',w°) on
comparison period technology.

Insert Figure 4 about here

4.3 Combining the Output Side and the Input Side

We now construct an implicit Konus productivity index. We ignore base period
and comparison indexes and proceed directly to an implicit Konus productivity index.
The ratio of (25) and (28) is
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YigxLx%pLp0yly®) Y
=7l X M 1! 0;X1'XOJ 1) 0; Wl; WO ) 31
XIg(yly%wl w0 x1x0) Xg k(Y po,p ) (31)

in which the Konis price mix function Mg(y? y% x4 x% ptp%whw?) =
PMg(x1,x%, y1, v, pt, p2)/WMk (v1, v, x1,x% wl,w®) measures the gap between
Y (X' x0,p R0y YO X (y' Yo w' wlx' x°)  and  Ye/Xr. Because we expect
PMg (x%,x% y1,y% pt,p°) = 1 and we expect WMk (y?, yo x%, x% wl,w®) = 1 we also
expect Mk (y?,y% x1, x% p?, p°, wl, w?) = 1, in which case the implicit Konis productivity
index is approximately equal to a Fisher productivity index. Equality would require the
output and input price mix functions to be equal, a sufficient but not necessary
condition for which is p' = Ap°, A>0 and w' = uw®, u>0, which converts the problem to
a single output, single input problem for which index numbers are unnecessary.

The ratio of (26) and (29)

Pp _ PK(XlﬂXOﬂplpr)
W Wg(yty%whw?)

x Mg (y",y%x%,x° p', p°, wh, w®), (32)

provides an exact relationship between an empirical Fisher price recovery index and
a theoretical Konus price recovery index.

The ratio of (27) and (30) provides an implicit Konus measure of profitability
change

Pr(x*x%ptp?®  Yg
= x —] x My (y?1,v°, x1, x°, pt, p°, wt, w?), 33
WK(yl,yO,wl,wo) XF] K(y y p-,p ) ( )

and if Mg(y?,y° x%,x% pt, p%, wh,w®) = 1 a Konis price recovery index and a Fisher
productivity index approximately satisfy the product test with profitability change.®

In this section we have used implicit Konus quantity and productivity indexes to
relate Konus price and price recovery indexes to Fisher price and price recovery
indexes. The important findings are contained in (25), (28) and (31); (26), (29) and
(32); and (27), (30) and (33). The first three relate implicit theoretical quantity and
productivity indexes to their explicit empirical counterparts, and establish the
foundations for the second and third sets of results. (26), (29) and (32) clarify the sense
in which Konus price and price recovery indexes approximate Fisher price and price
recovery indexes. (27), (30) and (33) clarify the sense in which Konus price and price
recovery indexes approximately satisfy the relevant product test with Fisher quantity
and productivity indexes. In both the second and third sets of results clarity is provided
by the relevant Konus price mix function.
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In Section 3 the product test expressions (13), (16) and (19) have useful
empirical applications, since Malmquist quantity and productivity indexes decompose
by economic driver and Fisher price and price recovery indexes decompose by
individual prices. Here the product test expressions (27), (30) and (33) are of potential,
but as yet unrealized, empirical value. The Fisher quantity and productivity indexes
have been decomposed by economic driver of productivity change, although
agreement on a preferred decomposition remains elusive.” The Koniis price and price
recovery indexes have yet to be decomposed by economic drivers of price change
(rather than, as commonly practiced, by individual prices), although research on this
issue is underway.

We emphasize that the Konus price mix functions differ significantly from the
Malmquist quantity mix functions in Section 3, although they serve the same purposes,
to convert approximations to exact relationships and to close product test gaps. The
Malmquist quantity mix functions are ratios of values generated by two normalized
quantity vectors weighted by a common price vector. The Konus price mix functions
are ratios of values generated by a single quantity vector weighted by two normalized
price vectors.

5. Summary and Conclusions

We have exploited implicit Malmquist price and price recovery indexes to derive
exact relationships between Malmquist and Fisher quantity and productivity indexes,
and to derive economically meaningful functions describing the ability of Malmquist
quantity and productivity indexes to satisfy product tests with Fisher price and price
recovery indexes. The key to these exact relationships is the concept of Malmquist
output and input quantity mix functions, in which quantities are allowed to vary
between base and comparison periods but prices are fixed at either base period values
or comparison period values. The smaller the variation in the quantity mix between
base and comparison periods, the smaller the gap between Fisher and Malmquist
quantity and productivity indexes.

We also have exploited implicit KonUs quantity and productivity indexes to
derive exact relationships between Konus and Fisher price and price recovery
indexes, and to derive fundamentally different, but nonetheless economically
meaningful functions describing the ability of Konus price and price recovery indexes
to satisfy product tests with Fisher quantity and productivity indexes. The key to these
exact relationships is the concept of Konls output and input price mix functions, in
which prices are allowed to vary between base and comparison periods but quantities
are fixed at either base period values or comparison period values. The smaller the
variation in the price mix between base and comparison periods, the smaller the gap
between Fisher and Konus price and price recovery indexes.

The exact relationships have clear economic interpretations, as allocative
efficiency effects, although these effects differ between Sections 3 and 4. These
allocative efficiency effects are easy to calculate, using data required to calculate
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Fisher indexes and estimate Malmquist and Konus indexes, as Brea et al. (2011) have
demonstrated for Fisher/Malmquist pairings.
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Figure 1 Output Quantity Mix Functions
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Figure 2 Input Quantity Mix Functions
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Figure 3 Output Price Mix Functions
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Figure 4 Input Price Mix Functions
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Endnotes

' Our analysis extends results in Grifell-Tatjé and Lovell (2015; Chapter 3).

, ) o ] _[{p°Tyt piTyl 1/2 _
The Fisher qualr;tzlty indexes are defined as Yr = [(pOTyO)x(plTyo)] and Xg =
0T ,.1 1T, 1

[(KOT;)X(ZH;)] , and the Malmquist quantity indexes are defined as Yy =
DY(x0y1) Di(x1yh) 1/2 _[(D?(yo’xl)) (Dil(yl’xl))Jl/z

l(Dg(xO,yO))X(D,}(xl,yo))J and XM_ D?(yo,x‘)) X Dil(yl,xo) ’

s ) ] ) ] _ yOTpt y1Tp1 1/2 _
The Fisher price indexes are defined as Pr = [(yOTpo)x(lepo)] and Wg =
20T 1Ty 171172

[(XOTWO) X (XlTWO)]

* The Koniis price ind defined as Py = |52 x L&D Y% and Wy =

e Konls price indexes are defined as P« = |57575 % 5575 a K =

1/2

TR
oW T Aot
> All approximation results in this section also can occur if the technologies allow infinite output
substitution possibilities along IP°(x°) and IP'(x") between output rays defined by y' and y° in
Figure 1, and infinite input substitution possibilities along IL°(y®) and IL'(y") between input rays
defined by x' and x° in Figure 2.

¢ All approximation results in this section can also occur if y° and y' in Figure 3 and x® and x'
in Figure 4 are vertices of piecewise linear technologies that allow p'"y° = p°y°, p°y" = p'y’

and w''x? = wx°, wx' = w''x", as might occur with DEA.

’ Compare, for example, the decompositions proposed by Ray and Mukherjee (1996) and by
Kuosmanen and Sipildinen (2009).
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