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Abstract

This paper proposes and characterises a new normative solution concept for Kydland and
Prescott problems, allowing for a commitment device. A policy choice is dominated if either (a) an
alternative exists that is superior to it in a time-consistent subdomain of the constraint set, or (b)
an alternative exists that Pareto-dominates it over time. Policies may be time-consistently
undominated where time-consistent optimality is not possible. We derive necessary and sufficient
conditions for this to be true, and show that these are equivalent to a straightforward but significant
change to the first-order conditions that apply under Ramsey policy. Time-consistently
undominated policies are an order of magnitude simpler than Ramsey choice, whilst retaining
normative appeal. This is illustrated across a range of examples.
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1 Introduction

1.1 Overview

Time inconsistency is an endemic problem in the macroeconomic policy literature. Whether
monetary, taxation or social insurance policy, very few meaningful questions can be an-
swered without encountering it in some form. It arises whenever policy must be designed
for environments where expectations of future outcomes affect agents’ current actions.
This dependence provides an incentive to make promises about future policy that it will
not be optimal to keep. As a consequence, the ‘best’ choice of policy instruments for a
given time period depends on when this choice is being assessed —is it best ez-ante, or con-
temporaneously? The implied inconsistency in optimal choice was formalised by Kydland
and Prescott (1977), and its consequences have been widely studied by macroeconomists
ever since.

By definition, time inconsistency means that it is not possible to choose a dynamic
allocation that will be optimal from the perspective of every time period in succession.
A plan that is optimal initially will not be optimal to continue with. The conventional
response to this in the normative policy literature is to surrender the principle of successive
optimality, and focus on selections that are best from the perspective of the initial time
period only. This has commonly come to be known as ‘Ramsey’ policy design, following
the foundational contribution to optimal tax design of Frank Ramsey (1927). It is a
method that has been widely applied in many different policy environments.

An alternative approach, comparatively underexplored, is to surrender the principle
of optimality, and ask whether there exist weaker normative criteria that can be time-
consistently satisfied by some dynamic plan. That is, if no policy is best from the per-
spective of every period, might there nonetheless be options that always remain tolerably
good? This is the basic problem that our paper investigates.

Note that this is different from the widely-studied positive question: What s the
equilibrium outcome of discretionary policy choice? A discretionary outcome is commonly
considered a normative failure, implying a lower welfare level in every period than could
be attained through a feasible commitment. This is the well-known ‘rules beat discretion’
result.

Our analysis departs from this positive approach in the equilibrium concept used: we
assume that policy precommitment is possible. Given this, we differ from the Ramsey
approach in the solution concept used. In the set of feasible commitments, we seek
a policy that exhibits appealing normative properties consistently through time; the
Ramsey approach seeks a choice that is optimal for just one period — the first.

Clearly the strength of our approach will rest on what exactly is meant by ‘appealing

normative properties’ here. The analytical device we use to formalise this is the idea



of dominated selections. Even when a general choice problem is subject to time incon-
sistency, some policy comparisons may be viewed as less contentious than others. For
instance, it might be possible to isolate a subset of the available options, and find that
for choice in this subset alone, no time inconsistency problem even exists. If this is true,
a sub-optimal choice in the restricted subset is surely not desirable for the problem as
a whole. Alternatively, it may be that in a pair of feasible alternatives, one option is
preferred to the other at every current and future point in time. In this case a Pareto
criterion, applied through time, can rule out the inferior choice.

Our paper formalises this reasoning. We endow the space of feasible commitments
with an incomplete ‘dominance’ ordering at any given point in time. Where it exists, this
ordering always agrees with the policymaker’s preferences, but like the Pareto principle
it will leave many pairs of options unranked. Its construction is based on the principles
outlined in the previous paragraph. First, in time-consistent subdomains, standard choice
is assumed to apply. Second, where the Pareto principle can be applied over time, it is.
The idea is that these represent relatively uncontroversial choice principles, even in the
wider context of time inconsistency.

Since the dominance ordering agrees with standard policy preferences wherever it
exists, the resulting set of undominated allocations will be larger than — and contain —
the more exclusive set of optimal choices in each period. Time-consistent membership
of the undominated set may thus be possible where time-consistent membership of the
optimal set is not. This is the basic normative argument that we pursue.

Given this approach, our main analytical contribution is to characterise necessary and
sufficient conditions for policies to belong to the undominated set in every time period.
These are the ‘time-consistently undominated policies’ to which the paper’s title refers.
We apply these characterisation results to a number of textbook examples, highlighting
the differences relative to Ramsey choice in particular. In a version of the Judd (1985)
capital tax problem, time-consistently undominated capital taxes satisfy an intuitively
simple efficiency-equity trade-off in all periods, and are generally positive. In a social
insurance problem with one-sided limited commitment, time-consistently undominated
policy involves a stable consumption distribution, with a progressive effective marginal
savings tax. In a social insurance problem with asymmetric information, & la Atkeson
and Lucas (1992), time-consistently undominated policy induces a stable consumption
distribution where Ramsey policy implies an immiseration result.

Central to the general characterisation is a novel set of restrictions on the Lagrange
multipliers that attach to dynamic promise-keeping constraints in each period. These
multipliers are well-studied objects in the literature on Kydland and Prescott problems,
following the work of Marcet and Marimon (1998, 2017). Intuitively they summarise the
way that policy balances the prior value of keeping promises with the contemporaneous

cost. Ramsey policy requires the multipliers to be highly persistent through time, mean-



ing that the demands of past promises ultimately come to dominate policy choice. Under
time-consistently undominated policy the multipliers instead exhibit gradual decay, at
a rate that coincides approximately with the policymaker’s discount factor. This has

significant implications for the character of policy, particularly in the long run.

1.2 Why study this problem?

Our motivation for investigating time-consistent normative solution concepts derives prin-
cipally from unease expressed in the literature about the properties of Ramsey policy.
This remains the main benchmark when generating policy advice, but at least three
distinct features make its suitability for practical recommendations questionable.

The first issue relates to the arbitrariness of date-contingent choice. Under Ramsey
policy, the optimal instrument choice varies systematically in the amount of time that
has elapsed since the initial optimisation period — ‘date zero’. Section 2 provides a sim-
ple example. This time variation occurs independently of any evolution in underlying
economic variables. A number of authors have argued that such a feature is either un-
desirable, implausible, or both. As Svensson (1999) put it, “What is special about date
zero?”. This view has been particularly prominent in the New Keynesian monetary policy
literature, where it prompted Woodford (2003) to develop the widely-applied ‘timeless
perspective’ approach to policy design. Though the approach we recommend ultimately
differs from Woodford’s, his search for “a systematic decision procedure in the light of
which ... current actions are always to be justified” is precisely our focus.!

A second issue with the Ramsey approach relates to its long-run dynamics. There are
a number of settings in which the long-run outcomes of a Ramsey-optimal plan can be
extremely undesirable in isolation. In many dynamic asymmetric information settings,
for instance, it may be Ramsey-optimal to drive the consumption of almost all agents to
zero as time progresses — even though the policymaker is utilitarian. An example based
on Atkeson and Lucas (1992) is given in Section 9.3 below. The deeper problem is that
an optimal choice for date zero need not exhibit any clear desirability properties when
reassessed at a later point in time. A time-consistent normative choice technique can
overcome this by design.

A third feature of Ramsey policy that may be problematic is its relative inflexibility. A
Ramsey plan is defined as a set of instrument choices that are optimal from the perspective
of date zero. This is crucially dependent on the model of the economy that is adopted in
date zero. In practice every model of the economy will come to be updated and improved,
in ways that cannot easily be foreseen. How the Ramsey plan should be affected when this
occurs is a very difficult problem. Full reoptimisation, treating the current period as a

new ‘date zero’, could be viewed as a violation of the past commitment; but retaining the

"'Woodford (2003), § 7.1, p. 474.



existing plan is surely suboptimal. There is no easy intermediate position. Our approach
can again overcome this issue. It allows the appropriateness of a policy to be assessed on
a rolling basis, without any dependence on past perspectives to motivate choice.
Though we find these arguments interesting and forceful, we also stress that their
validity is not our principal concern. It is clear that reasonable doubts can exist about
the appropriateness of Ramsey policy in certain settings. So long as this is true, it makes

sense as a practical matter to investigate normative alternatives.

1.3 Related literature
1.3.1 Commitment, discretion and rules

Since the seminal contribution of Kydland and Prescott (1977), a vast number of papers
have engaged with the general problem of time inconsistency — both from a normative
and a positive perspective. With the exception of the New Keynesian literature, dis-
cussed below, the dominant normative focus has been on Ramsey policy, with significant
innovations over the years in its characterisation and computation. The work on dynamic
games by Abreu, Pearce and Stachetti (1990), and on recursive saddle-point problems
by Marcet and Marimon (1998, 2017) has provided alternative devices for representing
the Ramsey problem in recursive form.? Our characterisation results, below, are stated
in terms of the promise multipliers whose use Marcet and Marimon popularised, and are
easiest to interpret by comparison with their work.

The positive literature on time inconsistency considers the implications for policy and
welfare of a lack of commitment. Here there are important differences in the equilibrium

3 These allow

concept used. The majority of papers seek Markov-perfect equilibria.
no scope for promises to bind choice, though strategic incentives to influence future
decisions can affect the choice of endogenous states. Outcomes are generally inefficient,
with commitment strategies delivering welfare improvements from the perspective of every
time period.*

A smaller, though highly influential, literature focuses on history-contingent reputa-

tional equilibria.” This ‘sustainable plans’ approach characterises the set of policies that

2Though Abreu, Pearce and Stachetti (1990) wrote on dynamic games, there have been many appli-
cations of their work in the macroeconomics literature, including Kocherlakota (1996a), Chang (1998)
and Phelan and Stachetti (2001).

3Examples include Klein and Rios-Rull (2003), Ortigueira (2006), Ellison and Rankin (2007), Klein,
Krusell and Rios-Rull (2008), Diaz-Giménez, Giovannetti, Marimon and Teles (2008), Martin (2009),
Blake and Kirsanova (2012), Reis (2013), Niemann, Pichler and Sorger (2013), Bianchi and Mendoza
(2013), and Debortoli, Nunes and Yared (2017).

4A related branch of work is the ‘loose commitment’ approach developed by Debortoli and Nunes
(2010). This sits between the positive and normative branches of the literature, analysing the outcomes
of optimal policy problems when reoptimisation is known to take place at random intervals through time.

®Chari and Kehoe (1990) and Atkeson (1991) were pioneering early papers. More recent work of
this kind in the social insurance literature includes Sleet and Yeltekin (2006), Sleet and Yeltekin (2008),
Acemoglu, Golosov and Tsyvinski (2010), Farhi, Sleet, Werning and Yeltekin (2012) and Golosov and



can be supported by appropriate trigger strategies in an infinite horizon. The threat
of reversion to an inferior equilibrium can allow some promises to be kept, though the
Ramsey strategy is usually not attainable. A common feature of this literature is inde-
terminacy: the set of sustainable equilibria is large, though — mirroring Ramsey policy —
it is common to focus on the best sustainable equilibria from the perspective of the initial
time period.

The variant on this literature that comes closest to our work is Kocherlakota (1996b),
who introduces a refinement that he dubs reconsideration-proofness to the problem of
finding a sustainable plan. Developed in a purely stationary environment, this recom-
mends selecting an equilibrium that is best, subject to the assumption that future pol-
icymakers will be allowed to select in exactly the same manner. This naturally leads
to the best constant choice over time. This exactly coincides with our symmetric time-
consistently undominated policy in examples without state variables, though it is not

directly applicable to models with states.

1.3.2 The timeless perspective

The problem of finding a time-consistent normative solution concept in Kydland and
Prescott problems has been most directly framed in the New Keynesian literature. The
‘timeless perspective’ method proposed by Woodford (1999, 2003) recommends imple-
menting in all periods a policy rule that is consistent with the long-run outcome under
Ramsey policy. This method remains commonly applied across a range of problems in
monetary policy design, particularly in linear-quadratic environments.%

Our results sound a note of caution about the timeless perspective. We show that the
long-run continuation of Ramsey policy can generically be Pareto-dominated by alterna-
tive feasible selections. This makes the justification for choosing it appear weak.” This
is particularly evident in the example of Section 2, where the timeless perspective policy
would select a constant inflation-output combination that is strictly inferior to alternative

feasible constant policies.

1.3.3 Variable social discounting

The immiseration result is commonly regarded as a troubling conclusion per se, and work
by Phelan (2006) and Farhi and Werning (2007) investigates options for overcoming it.
Like our paper, the approach of these authors is explicitly normative, with the assumption

of a perfect commitment device. Unlike our paper, the essential strategy that Phelan

Tovino (2014).

6Recent papers making use of it include Giannoni and Woodford (2017), Armenter (2017), Curdia
and Woodford (2016), Engel (2014), Benigno and Paciello (2014), Adam and Woodford (2012), Benigno
and Woodford (2012), and Corsetti, Dedola and Leduc (2010).

"The desirability of the timeless approach has been already questioned in the context of a linear-
quadratic New Keynesian problem by Blake (2001). See also Damjanovic, Damjanovic and Nolan (2008).



(2006) and Farhi and Werning (2007) propose is to raise the societal discount factor. This
is justified on first principles as identifying an alternative position on the intergenerational
Pareto frontier.

There is a long tradition in economic policy design, dating at least to Ramsey (1928),
that recommends a higher societal discount factor relative to private-sector preferences.
Whether this is appropriate or not is a deeply contentious question, and we do not
propose to resolve it here. We note simply that it implies a more substantial change
to the principles of policy design than our paper. Our method is deliberately designed
to preserve standard choice in time-consistent environments. As the example of Section
9.3 shows, it is possible to overcome the immiseration result just by amending choice

principles for the time-inconsistent aspects of a problem.

1.4 Paper outline

The paper proceeds as follows. Section 2 outlines a simple linear-quadratic problem that
further illustrates the motivation for what we do. Section 3 presents a general problem
that we use to develop the main ideas, and discusses some key assumptions. Sections 4
and 5 describe, in turn, the dominance ordering that we place on the space of feasible
allocations, and how choice can be conducted in light of this ordering. Section 6 shows
that this choice problem can be divided into a two-stage procedure, with a time-consistent
‘inner’ problem that takes promises as given, and a time-inconsistent ‘outer’ problem that
is concerned with the choice of promises. This is a crucial step in operationalising our
approach.

Section 7 provides necessary and sufficient conditions for policies to be time-consistently
undominated, and shows that conventional normative and positive approaches do not
satisfy these. Section 8 shows that time-consistently undominated policies have a dual
interpretation as promise choices that are optimal for every period along one choice di-
mension. This is used to add an appealing symmetry refinement to our approach, allowing
multiplicity to be overcome. Section 9 applies our approach to three textbook settings: a
capital tax problem, a social insurance problem with limited commitment, and a dynamic

asymmetric information problem. Section 10 concludes.

2 Motivating example

The introductory discussion can be clarified by exploring a simple example. This sec-
tion explains the problem of normative choice in the context of a linear-quadratic New

Keynesian inflation bias problem with no uncertainty.® With just two variables and one

8The problem is studied for its simplicity rather than its realism. More detailed foundations for it
are discussed in Woodford (2003), § 7.1.



linear constraint, the environment is as simple as possible.

2.1 Setup

Time is discrete, and runs infinitely from some initial period 0. The supply side of the

economy in period ¢ is described by a linearised New Keynesian Phillips Curve:

T = BEmi + Yy (1)

where m; is inflation in period ¢, y; is a measure of the output gap, E; is a standard
expectations operator and 5 € (0,1) and v > 0 are parameters. Policy choice is assumed
to be across output and inflation sequences from 0 onwards, subject only to equation (1).
To keep notation compact we denote infinite sequences by bold type with an overbar,

with subscripts giving the starting period, so ¥o := {y:},—o, s := {m:},—,, and so on.

2.2 The feasible set

Any pair (ys,7s) that satisfies (1) for all ¢ > s is a feasible choice from period s

onwards. For all s > 0, define = as the set of feasible policy sequences from s on:
=={(¥s,7s) : (1) true for all £ > s}

Note that Z is time-invariant. A pair of inflation and output sequences that is feasible

from s onwards would also be feasible from ¢ onwards.

2.3 Time inconsistency and Ramsey choice

The central policy problem is to make a selection from =Z. We assume a commitment
device, so that every element of = can potentially be chosen. The focus is on the normative
properties of alternative selections.

In any given period s > 0 the policymaker has a complete, rational preference ordering

over =, described in the usual way by the objective function Wi:

o0

We==> B [m +x(w—v)] (2)

t=s

where y* > 0 is an optimal level for the output gap and x > 0 is a parameter.

Ramsey policy is defined as the selection (y&, ¢ ) such that Wy is maximised on =.

In this simple linear-quadratic environment it will be unique:

(yOR,ﬁ'OR):arg max W,
(Fo,70)€E



This policy is an important and widely-studied benchmark, but it is well known that
it is a time-inconsistent selection. It recommends values for m; and ¥, that are positive
initially, but tend jointly to zero as time progresses. Since the model is entirely stationary,
re-optimising in any period s > 0 would imply exactly the same dynamics, but starting
from s instead of 0. This means departing from the continuation of the period-zero
Ramsey plan. Hence ‘maximise W, on = is not a time-consistent solution concept.

As is well known, the reason for the inconsistency is that constraint (1) contains the
forward-looking term E;m;, ;. There is an incentive to make promises about future alloca-
tions in order to manage inflation expectations. When the future arises, the justification

for keeping these promises has passed.

2.4 Time-consistent choice criteria

Time inconsistency implies that a policy cannot be optimal for every period. It can at best
either (a) be optimal from the perspective of just one period, or (b) be desirable in some
weaker sense, in every period. Choosing the Ramsey plan (37(1,7”7 ﬁ'OR) means following the
first approach, where period 0 is the date that is privileged. Our aim is to operationalise
the second approach.

The simplicity of the present example is helpful. Whatever time-consistent solution
concept we ultimately devise, in this stationary, deterministic environment it must deliver
a time-invariant inflation-output choice.® The class of constant inflation-output combi-
nations is easy to investigate here, and provides useful insights that will later generalise.

Formally, we can define the set of feasible constant policy options as =¢ C =:
= :={(Jo,T0) € Z: (ys, ™) = (ys, ms) forall t,s > 0}

There is a unique choice that maximises Wy on = for all s, which we label (¥§, 7§) — the
optimal constant policy.!’ It would be extremely hard to construct a normative case for
any constant choice other than this.

The puzzling aspect of this finding is that (§§, 7§) is not related in any obvious way
to the main policy benchmarks that exist in the literature. It is neither the long-run
outcome from Ramsey policy, nor the time-invariant Markov equilibrium. Figure 1 con-
trasts optimal constant policy with these outcomes for conventional parameter values.!'!
The Markov outcome is biased towards excessive inflation, and is clearly Pareto ineffi-
cient when considering the preferences of policymakers at differing points in time. More

intriguingly, Figure 1 highlights that the continuation of Ramsey policy is also inefficient

°Tf this were not true, re-applying the choice criterion in a later period would imply deviating from
any earlier selection.

xy(1=p)

101t is a simple exercise to show that this is given by y§ = e s

t.
HWe assume 3 = 0.96, v = 0.024, x = 0.048 and y* = 0.05.

X(lfﬁ)r‘))zy* and 7§ = y* for all

Y2+x(1-8
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Figure 1: Ramsey, Markov and optimal constant policy

in this sense, once enough time has elapsed. For sufficiently large s, all policymakers
from s onwards strictly prefer (y<, 7<) to (}7?, 7‘1’5). Note that the limiting outcome of
Ramsey policy, with 7, = 1, = 0, is the ‘timeless perspective’ policy recommended for
every period by Woodford (2003). This is clearly inferior to the optimal constant choice.

We can build on this discussion by defining a Pareto dominance across pairs of allo-

cations in this example as follows:

Definition. Policy (¥.,7.) € = dominates the alternative (2, 7”) € = in period s > 0
if there exists ¢ > 0 such that W; is higher under (¥, ;) than (y¢,7¢) by at least an

amount ¢ for all ¢t > s.

A policy (¥%, 7.) € = is undominated in period s if there is no alternative in = that
dominates it in s. Note that the set of undominated policies in s will always contain
the optimal policy to implement from s onwards, but it will generally contain many
other elements too. Moreover, the optimal choice in s may come to be dominated in
continuation in periods subsequent to s. Figure 1 confirms that this is true of the Ramsey

policy. We will seek time-consistently undominated policies:

Definition. A policy (¥g, ) € = is time-consistently undominated if its continua-

tion (¥.,7) is undominated for all s > 0.
We have the following result:'?

Proposition 1. The optimal constant policy (¥§, ) is time-consistently undominated.

C

¢) is shown to be undominated in the entire set

This is non-trivial, because (y¢, 7

=, not just the restricted set =°

in which it is optimal. Given the chosen definition of
dominance, it shows by example that time-consistently undominated policies can exist in

environments where time-consistently optimal policies do not. Weakening the normative

12Proofs of Propositions are collected in Appendix A.
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Figure 2: Three time-consistently undominated policies

requirement from ‘optimal’ to ‘undominated’ thus yields a choice criterion that can be
asserted in all periods. Moreover, the resulting policy is qualitatively distinct from the

main positive and normative benchmarks in the literature.

2.5 Multiplicity

An important qualification to this result is that the optimal constant policy is not the only
time-consistently undominated selection available. Figure 2 charts two others alongside
it. The policy labeled ‘limiting path’ involves a strictly higher inflation rate initially,
approaching the optimal constant choice at the limit as time passes. Because the two
are equivalent at the limit, the strict Pareto dominance requirement is not met for any
e > 0. The other policy, labeled ‘fluctuating path’ sees inflation and output follow
a two-period cycle, permanently fluctuating about their optimal constant values. This
highlights that the multiplicity of time-consistently undominated solutions is not just a
‘transition’ issue. There are time-consistently undominated paths that never converge to
the optimal constant solution.

Though it rules out important benchmarks, it is clear that the dominance criterion
alone does not deliver a unique time-consistent selection. If uniqueness is desired, some
further refinement is necessary. Yet it is also clear that, at least in this example, there
is one ‘obvious’ candidate for a refinement — the optimal constant policy. As well as
being an order of magnitude simpler, this is the only selection that treats all periods

symmetrically.

2.6 Summary

The general lessons from this example can be summarised as follows:

3 Given this, it is clear that a weaker Pareto criterion would not allow time-consistent choice.

11



1. In a model without states or shocks, selection from the set of constant policies is a

time-consistent choice procedure.

2. The solution to this problem is nether the outcome of a Markovian, discretionary

equilibrium, nor the long-run outcome observed under Ramsey policy.

3. The optimal constant policy is time-consistently undominated, according to a strict

Pareto criterion.

4. Many other policies are also time-consistently undominated by this criterion, but

all of these imply asymmetries in policy choice through time.

The analysis that follows will generalise all four of these insights.

3 General setup

We develop the theory in a general setting that nests a number of the most well-known
Kydland and Prescott problems. As above, sequences are written using bold type with
an overbar, with subscripts to denote starting period. Superscripts are used to denote

the end period of a finite sequence where necessary. Thus X, := {7}, X5 = {:};_,,

Sr—1x =/ : * * * / /
and so on. (XX7'*,X.) denotes the combined sequence {a%, 2%, ,...,25_y, 2}, 2}y, ... }.

3.1 Preliminaries

Time is discrete, and runs from period 0 to infinity. We abstract from aggregate risk for
simplicity. The framework allows settings with idiosyncratic risk across large populations
of agents.

In each period t > 0 there is a vector of n predetermined ‘state’ variables x;_; €
X C R7", with z; to be chosen in ¢, and a vector of m non-predetermined variables
a; (o) € A, C R™ defined for all ¢ € X, where o is an identifier variable — possibly
stochastic — discussed in more detail below, and X is the set of possible o realisations.
We define a; € A as {a; (0)} oy, With A := {A,}

The role of ¢ varies flexibly across examples, but in general it is used to index the

oeX”

set of forward-looking constraints that are of relevance in any given time period. In
environments with heterogeneous agents subject to idiosyncratic risk, for instance, each
particular ¢ € X will correspond to a distinct history of exogenous shocks. Individuals
with different shock histories may receive different allocations, and so for each o a distinct
forward-looking restriction may be required. In deterministic environments with multiple
forward-looking constraints, o can be used as a simple index on these constraints.

We assume that X is a time-invariant set. In stochastic environments this means

that the quantity of information on past shocks across individuals is stationary, not

12



accumulating over time. This may imply that detailed shock histories for different agents
are known even at the start of time, which is a departure from convention in many
settings. It would not make a difference for policy results if histories up to period 0 were
generated fictitiously, so this information requirement is not a practical impediment to
applying our approach.

o is assumed to follow a Markov process over time, with the conditional probability
measure I1 (S|o) giving the probability of S C X in period ¢ + 1, given that o is drawn
in t. Where the meaning is obvious, expectations with respect to this measure will be
represented by E;. The conditional measure I (-|o) is assumed to be time-invariant. In
addition, there is an unconditional probability measure across the elements in Y, denoted
IT(S) for all S C 3, also independent of time. This satisfies a standard consistency
property:

I1(S) = / I (S|o)dll (o)
oES

for all S C X.
In environments with idiosyncratic risk, it will often be desirable to link current
allocations to individuals’ past histories. For this, it is helpful to assume that o is ‘fully

revealing’ of past type, defined as follows:

Definition. ¢’ € ¥ is fully revealing of past type if there exist S C ¥ with ¢’ € S such
that there is just one o € ¥ with II(S]o) > 0.

Assumption 1. For all 0 € X, o is fully revealing of past type.

This assumption, combined with the time-invariance of ¥, implies that in many ex-
amples of interest o will correspond to a complete infinite sequence of past shock draws.
The problem in period s is to select a sequence of the form (Xg,a5)€ X x A, where
X x A is the space of infinite sequences of elements in X x A. X and A are taken to be
Banach spaces, equipped with a norm ||-||. A generic element of X x A is referred to as
an allocation. This choice problem will be subject to a set of constraints to be discussed

below.

3.2 Social preferences

The set of allocations X x A is ordered in generic period s according to some social

preference ranking. This ranking is described by the function Wi:

Wy = z Bt /EE r(a; (0),0)dl (o) (3)

where r : A, x ¥ — R is a within-period, o-contingent preference function for period

s > 0, and higher values of W correspond to more preferred outcomes.
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These preferences are dynamically recursive, and so are not themselves a source of
time inconsistency. The assumption that r» does not depend on any state variables is a
useful normalisation without significant loss of generality. It is always possible to define
auxiliary constraints and variables that incorporate this dependence.'

It is useful to define many concepts directly by reference to the binary preference
relation that W, describes on X x A. This will be denoted > for weak preference, with
> and ~ denoting strict preference and indifference respectively. Thus (X},a}) > (X7, al)

if Wy is weakly higher under (X, a.), and so on.

3.3 Constraints

There is an i-dimensional vector of ‘structural’ feasibility restrictions linking the inherited

and future state vectors in X, and the current variables in A:

g (xtfltha at) Z 0 (4)

where g : X x X x A — R’ This must be satisfied for all £. An example would be
a simple within-period aggregate resource constraint of the form Y; — C; — I, > 0, or a
capital accumulation equation of the form K; < (1 —9) K;_1 + I;.

Time inconsistency derives from a set of infinite-horizon ‘forward-looking’ constraints,

one for each o € Y. These are generally assumed to take the form:

K, Z BTh (at+r (Ut+r) ) Ut+7)
7=0

at] > h° (a; (1) , 0¢) (5)

where o, € X denotes a 7-period successor history to o, € X, h : A, x ¥ — R and
R : A, x ¥ — R for all t > 0. When planning choice in period s, condition (5) must
be satisfied for all o, € ¥ at all ¢t > s. The following assumption can be helpful in

guaranteeing the relevance of (5):

Assumption 2. For all 0, € ¥ and ay1 € A, there exists at least one within-period
choice a; € A such that (5) is violated.

Assumption 2 helps to keep the constraint space simple in certain choice problems
that follow. It could be dispensed with quite easily, but there are expositional gains from

using it, as highlighted below.

MFor instance, in a model that features consumption habits it is possible that the desired preference
criterion might take the form r (¢; — Ac;—1) for some variable ¢, and parameter \. In this case we can
define ¢ := ¢; — A¢;—1, and use this to suppress the dependence of r on the lagged variable ¢;_1. The
definition of ¢; then becomes one of the structural restrictions defining the model.
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3.3.1 Discussion of constraint (5)

Some limits to generality are necessary to keep the discussion manageable, but constraint
(5) is sufficiently flexible to incorporate many of the canonical settings in which time
inconsistency features. As with the objective function r, for simplicity we have assumed
that state variables do not enter into h or h°. This ensures that the space of allocations
consistent with (5) alone will be time-invariant. The infinite upper limit in the summation
is slightly restrictive, as it rules out examples where only finite-horizon expectations
matter. It is straightforward to extend our analysis to allow for such cases, but we avoid
doing this to economise on notation.'”

A more significant limitation of (5) is that it does not easily incorporate incentive-
compatibility constraints. Unlike (5), incentive restrictions generally require the right-
hand side also to be dependent on future policy choices, as individuals compare promised
outcomes under alternative behavioural strategies. A variant that would work for this
case is:
> E,

O

E Z BTh (at+7' (Ut+7) ) Jt+7)
7=0

Z BTh (at+7’ (6t+7') ) Ut+7‘)
7=0

Ut] (6)

where 0;,, can be viewed as an admissible type report 7 periods after ¢, potentially
different from the agent’s true type. This sort of constraint is central to a number of
important environments where Kydland and Prescott problems matter, and we do not
wish to neglect it in the treatment. The general discussion is restricted to constraints
of type (5) to keep notation manageable, but Appendix C extends the main results to
problems with constraint (6), and Section 9.3 in the main text provides an application
based on the Atkeson and Lucas (1992) problem.

3.3.2 Equivalent i functions

In most settings the function h will have a clear economic interpretation — the within-
period level of utility for an agent, for instance, or within-period expenditure. This
interpretation conveys economic information beyond what is mathematically necessary
to preserve inequality (5), and it may be useful to compare h across dates and states on
the basis of this information. This will be particularly useful when formalising a notion
of symmetry through time in policy choice.

Formally, define an admissible equivalence transform as a function ¢ : RxNx Y —

15Tn many cases the relevant constraint can be rewritten to match the form of (5) even when it does
not initially appear to do so. For instance, the New Keynesian Phillips curve in equation (1) can be
solved forward to give:

(o)
T = Y Z ﬁTyt-s-r
7=0

When the equality is read as a two-sided inequality, this maps directly into (5).
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R that can be permitted to transform the A function in inequality (5) without changing
its economic content.'® As is well known, different forms of comparability imply different
admissible transforms. There are two main forms of comparability in h that we will

consider. The first, and most widely applicable, is that h is difference comparable.

Definition. The function h is difference comparable if all admissible transforms take

the form:
¢ (h,t,0) =6h+ oy (0)

where the scalar 6 € R, is common across time and states, but the additive coefficient

ay (o) € R can vary in both.

As the name suggests, this form of comparability allows changes to h to be meaning-
fully compared from one date-state to another. It is well known to be a necessary assump-
tion for utilitarian objectives to have meaning.!” Many important Kydland and Prescott
problems assume weighted utilitarian social objectives, whilst also featuring utility-based
forward-looking constraints. In these cases, difference comparability across agents’ utility
functions is implicit in the choice of social welfare function. Difference comparability is
also an appropriate assumption to make when treating linearised models.

An alternative is for h to be ratio comparable.

Definition. The function h is ratio comparable if all admissible transforms take the

form:

(b (h‘vtu U) = 615 <0> h
where 6; (o) € Ry for all ¢ and o.

This form of comparability implies that proportional changes to h are independently
defined. An example of an h function that is ratio comparable is one that specifies an
agent’s net expenditure within a given period. Proportional increases in expenditure have
meaning irrespective of the numeraire used to define value, and remain unaffected as that
numeraire is changed. This sort of function features in the implementability condition
for many dynamic Ramsey tax problems.

The comparability properties of h are a primitive feature of the economic environment

in any given example, defined as part of the specification of h.

3.4 The feasible set

We denote by = (zs_1) the feasible set of allocations from period s onwards, given z4_1:

E(rs1) ={(Rs,a5) € (X x A): (4) & (5) true Yo € X, Vt > s, given x5 1}

16 Alongside this will be auxiliary transforms to the h° function and the discount factor, so that the
mathematical structure of inequality (5) is preserved.
17See, for instance, Roberts (1980).
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Any chosen allocation from period s onwards must be drawn from this set.

It is also convenient to specify in isolation the set of allocations that is consistent
with the structural constraints in (4), and the set of allocations that is consistent with
the forward-looking constraints (5). The set of allocations that satisfy (4) for any given

xs_ 1 is denoted Z9 (x4 1):
E9(xs-1) = {(Xs,a5) € (X x A): (4) true Vt > s, given x5}
Similarly, the set of allocations that satisfy constraints (5) will be denoted Z":
=" = {(%s,8;) € (X x A) : (5) true Vo, € %, Vt > s}

This set is independent of the initial state vector, since by assumption these do not feature

in constraint (5).

3.4.1 Feasibility and possibility

The analysis will make use of an independence of irrelevant alternatives (IIA) condition
in what follows. This requires the universe of ‘irrelevant’ alternatives to be specified. In
order that restrictions on the basic space (X x A) do not impede the applicability of ITA,

we adopt the following technical normalisation when defining the constituent space A:

Assumption 3. (Normalisation of A) Let R" (), R" (¢) and R (0) denote the ranges
of the functions h(-,0), h°(-,0) and r (-, ) respectively, for any given o € X. For any
three functions o" : ¥ — R (o), oY — R (o) and " : ¥ — R" (o) there exists an
a € A such that h(a,0) = o" (o), h° (a,0) = 0" (0) and 7 (a,0) = ¢" (o).

In words, any combination of values in the ranges of h (-,0), h’(-,0) and r (-,0) can
be attained by some choice of @ in A. To the extent that cross-restrictions rule certain
combinations out, these restrictions are normalised to belong to the problem’s constraints.
They do not describe the universe of possibilities.

This normalisation is sufficient, but by no means necessary for our purposes. It
provides the most general guarantee possible that non-ezistence of irrelevant alternatives

will never impede the analysis.

3.5 Structural assumptions

To place structure on the problem, we will impose the following assumptions on the main

primitives:

Assumption 4. The functions r, g, h, and h° are continuous and bounded. The spaces

A, CR™ and X C R™ are compact and conver.
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Assumption 5. g is quasi-concave, h is concave, h® is convex and r is strictly concave.

Assumption 4 provides essential structure and is imposed throughout. Compactness of
A, and X is its strongest component, as this implies bounds on the set of possible choices
that are unrelated to the problem’s feasibility constraints. But without loss we can assume
that these bounds are set arbitrarily loosely, and never affect the boundaries of the feasible
set = (zs_1). Assumption 5 is imposed more selectively, as needed. Quasiconcavity in g
ensures that the constraint space Z9 (z,_1) is always convex, and will be useful for deriving
sufficiency statements. The remaining concavity and convexity assumptions are needed

to obtain some sufficiency results, and to apply the Lagrange multiplier theorem.

4 Ordering

This section provides an axiomatic description of the dominance ordering that we use.

4.1 Basic approach and rationality properties

The analysis proceeds by placing a pairwise ordering on the time-invariant space =".

>_TC

This ordering is denoted , and is constructed by reference to two axioms that are

=T¢ will be incomplete on =", but where it exists it will always

defined in this section.
agree with the policymaker’s preference ranking >. This immediately conveys certain
basic rationality properties on =7¢, such as the absence of any cycles in strict preference.
Reflexivity of =7¢ will follow from the axioms, but transitivity is not imposed.'® The
axiomatisation constructs the strict and indifference orderings =7¢ and ~7¢ directly,
with =7¢ meaning that either =7 or ~7¢ is true axiomatically.

Defining =T on =" means that the ordering can differ as the problem’s forward-
looking constraints change, even for the same basic space X x A. This reflects the
centrality of the time-inconsistency problem to the construction of =7¢. By construction,

=TC will be invariant to the feasibility restrictions that make up =9 (z,_1).

4.2 Axiom 1: Constraint-based comparisons

The first axiom is based on isolating restricted subsets of =" where choice is known to
be time-consistent. If the policy problem were restricted to these subsets alone, standard
choice techniques could apply without impediment. A standard independence argument
then implies that choice for the wider problem should not recover a selection that is

inferior within a subset of this kind. The first axiom ensures this property.

P That is, (%, a) =7C (%,a0) and (%,&7) =7C (2,a) need not imply (%,,a,) =7C (X2',a"),
since (X},a%) and (X', a)") may not be ordered.

sy 9s s 1 9s
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4.2.1 Time-consistent comparability

The axiom is constructed based on a concept of time-consistent comparability across
allocations. This provides a formal description of the comparisons for which no time
inconsistency problem applies. Intuitively, these are comparisons that can safely be made
without any concern that forward-looking constraints could be violated at any horizon.
To formalise this, two auxiliary definitions are helpful. The first is the idea of a composite
allocation. A composite is constructed by taking the within-period allocations from one

or other of a pair of sequences. Formally:

Definition. Fix a pair of allocations (X,a), (X/,a’) € X x A. The allocation (XZ,a})
is a composite of (X,a.) and (X7,a7) iff for all t > s, (z},a;) € {(z},a}), (z},a))}.
The second definition is of a complete set of allocations.

Definition. The set of allocations 7; C X x.A is complete iff for every pair (X},ay), (X7,a]) €

S? s

Ts, every composite of (X.,a.) and (X!,a”) also belongs to 7.

The s subscript on 7, denotes the starting period for the sequences contained within
this set. 7; will then be used to denote the set of continuations of sequences in 7, for
t > s, and so on.

Completeness in the set of options from s onwards guarantees time consistency in

future choice. Formally:

Proposition 2. Fiz z,_y € X. For any complete set of allocations T, C EP, if (xX,a%) €

arg maxr,nzs(z,_,) Ws then (X;,a;) € arg MAXT, (2o (47 ) Wi for all t > s.

t—

Time consistency in future choice is one necessary feature of a time-consistent subdo-
main. A second important requirement is that prior forward-looking constraints should
not be violated by alternative selections in the initial period s. Both of these requirements

are included in the following formal definition of time-consistent comparability.

Definition. The set of allocations 7, C =" is time-consistently comparable to the

allocation (X[, ay) iff (X, al) € 7, and:
1. 7, is complete, and

2. Forallt > s, r>0and (X{°},8; ;) € (X x A, if ((x{°7,%;).(ai"}.a})) € ="
then ((X¢_;,%¢), (a}_;,ay)) € =" for all (x{,a}) € T;.

The second condition here states that if (Xi,a}) could be consistent with a certain
sequence of outcomes prior to ¢, then any alternative continuation in 7; must also be
consistent with this sequence.

The most trivial example of a set 7, that is time-consistently comparable to (XL, al)
is the singleton set containing (X7, a}) alone. Though not a particularly interesting case,

this confirms the basic possibility of satisfying the definition.

19



4.2.2 Imposing an ordering

By construction it is clear that if 7, is time-consistently comparable to the allocation
(XL, al), there will be no time inconsistency problem associated with relative comparisons
between (XL, a.) and other members of 7;. Where there is no time inconsistency, we have

no reason to depart from standard choice principles. This motivates the following axiom:

Axiom 1. (Constraint dominance) Let T, C =" be time-consistently comparable to
(x.,al) € Z". Then for all (X!,a”) € Ty:

1. (%, &]) = (%, &) implies (%], &) =" (%, &)

~TC (—/ —/)_

2. (RL&!) ~ (%.,&,) implies (%!, &) ~1C (%,,8,

If (x2,al) =1¢ (x.,a.) holds by application of Axiom 1, we say that (X, a’) constraint-

dominates (X, ay).
ote tha e converse (X ,ag) »~ (Xg,ag) 1s not assumed to 1mp Xg,dg) >~

Note that th %!, al %" a’) is not d to imply (%,,a.) =T¢
(xZ,aZ). The reason for this is that time-consistent comparability only ensures that
(X%,al) is consistent with all past constraints that (X[, al) satisfies, and not necessarily
vice-versa. A preference for (X, a)) over (X7,a’) in period s may coincide with allocation
(XZ,al) delivering on a tougher set of past promises. If true, it may not be a time-

consistent ranking.

4.3 Axiom 2: Preference-based comparisons

The second axiom is based on preference rankings rather than constraint spaces. Within
the set of allocations =", there will commonly exist pairs for which the within-period
ordering > is in agreement through time. A simple example would be any pair of constant
allocations in the inflation bias problem of Section 2. Whenever a subset of options has

>_TC

this property, a conventional Pareto principle can justify coinciding with >. The

second axiom formalises this.

4.3.1 Time-invariant feasibility

A Pareto principle can be applied whenever policy preferences between a pair of alloca-
tions, viewed in continuation, are unchanging through time. A complication in applying
this idea is that the comparative feasibility of the two alternatives may not be stable, due
to the evolution of state variables. For instance, in period s both (X.,a.) and (XZ,al)
may be feasible continuations, but in period ¢t > s (X{, a{) may not be feasible, given z}_,.
Depending on the model’s structural constraints, this can occur whenever z; | # z ;.
It makes the application of a Pareto criterion between the two sequences difficult, be-

cause (Xi,a;) and (X{,a}) can only be compared in period t under the assumption of
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a varying history. But the ordering > only describes preferences across continuations,
holding constant past outcomes.'® It does not necessarily provide a full description of
preferences across past decisions, and we do not want the Pareto criterion to be based on
an assumption that it does.

For this reason we restrict the definition of dominance to pairwise comparisons that

can be made without varying the sequence of state variables. Formally:

h

Definition. Allocations (X,a.) and (X7,a’) in =" are preference-comparable in pe-

: el gl
riod s if X = Xg.

Since the feasibility of a sequence in s implies the feasibility of its continuation in
t > s, the following is immediate:

Remark. 1t (X.,a.) and (XZ,a]) are preference-comparable and both belong to = (z5_1)

for some x,_1, then both (X{, a;) and (X{,a}) belong to = (z;_1) where 2,y =z, |, = x} ;.

That is, the feasibility of a pair of preference-comparable allocations in s implies that
both remain feasible in ¢, under the assumption that one or other of these allocations was
pursued up to t — 1. Pairwise rankings across continuations will be well defined in every
period, given that one or other option has been chosen to date. The Pareto principle will

thus be straightforward to apply.

4.3.2 Preference dominance defined

The Pareto principle is asserted in its strong form, so that =7¢

implies the strict ranking
> holds at all points in time. The example of Section 2 highlighted that weakening this
even at the limit as ¢ — oo could make time-consistent choice impossible.

A technical definition of strict preference that will endure in the limit can be achieved
by reference to lower contour sets. Let £ (as;X,) := {al € A: (X},as) = (X,al)} be the
lower contour set for the allocation ag in A under the ordering >, holding constant the
sequence of state vectors at X.. If the norm on A is denoted by |-||, then from the
definition of a lower contour set we have that (X[,al) > (X,aZ) applies if and only if

there exists an ¢ > 0 such that ||(a, — as)|| > ¢ for all a5 € £(aZ;x.). That is, a,

is
bounded away from the upper contour set of a2. This can be extended to ensure time-
invariant strict preference, including at the limit, by asserting that ¢ should be uniform
over time.

>_TC

Formally, Axiom 2 on the ordering is the following:

Axiom 2. (Preference dominance) For any pair of preference-comparable allocations

(%5, a) , (%4, ay) € 2

9Equivalently, the social welfare function W, that describes > should admit the addition of a separable
component that depends only on outcomes prior to s.
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1. If there exists an € > 0 such that for allt > s and all a, € L(a;X}), ||(af — ay)|| >

g, then (X,,a) =1¢ (x,,a).
2. If (%,,a,) ~ (X},a}) for all t > s, then (X,,a.) ~T¢ (%,,a").

If (x,,a)) =79 (x.,a”) holds by application of Condition 2, we say that (X.,a.)
preference-dominates (X,,a’).
Condition 2 ensures that our solution concept will not select the Pareto-inefficient

outcomes that can arise as equilibria under discretionary choice.

5 Choice

Orderings are precursors to choice. This section defines the link between the ordering
=7C and a robust set of undominated policies in each period. The non-trivial aspect of
this is a requirement that chosen policies should be robust to the inclusion of additional

‘irrelevant’ (dominated) alternatives in the feasible set.

5.1 Irrelevant alternatives

The two axioms used to construct the ordering =7¢

are quite restrictive in their applicabil-
ity. Axiom 1 only allows comparisons between time-consistently comparable allocations,
and Axiom 2 only allows comparisons between allocations that deliver identical paths
for the state vector through time. In some settings feasibility can severely restrict the
scope to make comparisons of this kind. In extreme cases it may be that the dominance
relation cannot be placed on any pairs in Z (xs_1). In these circumstances an expansion
of the feasible set could significantly expand the set of dominance comparisons possible,
even when the new additions are themselves dominated under =7 by other options in
= (xs-1). This motivates incorporating an ‘independence of irrelevant alternatives’ (ITA)
condition into choice.?

In our context an irrelevant choice is an allocation that is dominated under =7 by a

feasible alternative. More generally, the following definition is used:

Definition. Fix any 2/, | € X. The set = ( (x’s 1) is an irrelevant exten-

1) DEf
sion of 29 (#/,_,) under =77 if for every ( ) €29 9 (2/,_,) that is not in 29 (z]_,):
1. (%,,a)) € Eh; and

2. for all ¢ > s it is possible to find an allocation (X{,a}) € 29 (z_,) N E" such that

(X;',la 5‘4:/) >_TO (Xt7 at)

20Nash (1950) popularised this criterion. Sen (1970) §I*6 contains a useful discussion of it, referring
to it as ‘property (.
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Thus an irrelevant extension is an expansion of the feasible set such that every new
allocation is strictly dominated at every point in time by an allocation already in the

feasible set.

5.2 A robustly undominated set

To maximise generality we define an undominated set by reference to the largest possible
irrelevant, extension. Thus denote by =9 (xs—1) the union of all irrelevant extensions of
29 (2,_1) under =7, and let = (z,_;) := 29 (z,_1) N E". It is immediate that 29 (z,_,)
is the largest possible irrelevant extension of =9 (x,_;) under =7¢. The undominated
set, D (x4_1), is then defined by:

Definition.

D(zs1) = {(xs,as) €= (wyy): — |3, E) € (o) : (R,,7) =7C ()‘cs,as)”

>_TC

In words, D (zs_1) is the set of allocations that is undominated under in every

possible irrelevant extension of the constraint set.

6 A two-part problem

This section shows how undominated choices can be analysed via a two-step decompo-
sition of choice into ‘inner’ and ‘outer’ problems. The inner problem is concerned with
choice for a given sequence of promises. The outer problem is concerned with the choice

of these promises.

6.1 An inner problem: choice given promises

The decomposition makes extensive use of promise values. For any allocation (X, a.) €
X x A, we will say that this allocation induces the sequence of promise values

WL € W, defined elementwise for all 0,1 € ¥ and all £ > s by:

wy (04-1) 1= K¢y Z/BT_%(GIT (0r),07) Ut—l] (7)
T=t
The space W to which @, belongs is taken to be a Banach space with norm ||-||. Each

w; (o) is defined up to a set of transformations consistent with the definition of h,?* and

so W is likewise.

21 That is, if h is difference-comparable, w; (o) is defined up to the class of affine transforms with
common slope parameter across o and ¢, and if & is ratio-comparable, w; (o) is defined up to a scalar
multiple (that may vary in o and t).
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Promises play a useful role because they characterise time-consistently comparable

sets. Formally:

Proposition 3. Consider an allocation (X.,a.) € =", inducing promises @.,. A complete

set Ty is time-consistently comparable to (X.,a.) if for all (XI,al) € T the following

conditions hold for all o € X:

h(a} (0).0) + Bulyy (0) > K (d} (0).0) (®)
Ev [h (0 (07).0") + Bty ()] 0] > (o) 9)

When Assumption 2 holds, T is time-consistently comparable to (X,,a.) only if condi-
tions (8) and (9) hold for all (XI,a) € Ts and all 0 € X.

Assumption 2 is relatively strong, but its role here is mainly to simplify the statement.
It could be dispensed with in the ‘only if’ part, but with significant notational cost.
Condition (8) will be referred to in what follows as a ‘promise-making constraint’, and
(9) as a ‘promise-keeping constraint’.??

Given Axiom 1, the following problem then becomes central to the analysis:

Problem 1. (Inner Problem)

sup W

(3_(5755)€Eg($571)
subject to (8) and (9) for all t > s and all o € ¥, given @, € W and z,_1 € X.
The main interest in this problem comes from the following:

Proposition 4. 1. Foranyxz,_1 € X, each allocation in the undominated set D (x5_1)

solves Problem 1 for the promise values that it induces.

2. Let Assumption 2 hold, and suppose the allocation (XL, aL) solves Problem 1 for the
promise values that it induces, given vs—1 € X. Then no allocation in = (xs_1)

constraint-dominates (X, a.).

Thus the Proposition provides conditions under which ‘undominated under Axiom 1’
and ‘solving Problem 17 are equivalent requirements. For practical purposes part 2 will be
more useful than part 1. With enough regularity it is straightforward to find conditions
such that allocations solve Problem 1 for the promise values that they induce.

Problem 1 is referred to in what follows as the inner problem. By design, it is
entirely time-consistent. The outer problem is the problem of choosing a sequence of

promise values, Ws.

Z2Following Abreu, Pearce and Stachetti (1990), it is well known that augmenting the policy design
problem with promise-keeping constraints, and treating promises as additional states, allows the Ramsey
solution to be recovered using conventional dynamic programming techniques.
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6.2 An outer problem: undominated promises
6.2.1 The value function and its derivative

The value of the inner problem can be denoted V' (@s; xs_1), and this function is a useful
reference point for analysing the outer choice of promises @ws. It is defined for all g € W
such that the constraint set for Problem 1 is non-empty, given x,_;. This set is denoted
Q(xzs—1) €W, and its interior QO (xs_1). Appendix B establishes conditions for V' and
to exhibit important regularity properties, notably concavity of V' in the promises and
convexity of 2. Assumption 5 is critical to this; it will be harder to treat cases where
concavity in h and r and/or convexity in h° fail. The appendix also characterises the
derivative of V' with respect to the promises, where this exists. In general this is given
by:

Sy @) = 387 [ BN (@) + 3 )] s (0) = A )i ) 1T o)

where wg is a vector movement away from &g, required to have the property that
(s + awg) € Q(z5_1) for all « in a sufficiently small neighbourhood of zero. A" (o)
and A (o) are Lagrange multipliers on (8) and (9) respectively in Problem 1, and o_ is
the predecessor history to o.

Condition (10) is a standard envelope result, stated for arbitrary derivative vectors.
Intuitively, an increase in w1 (o) relaxes the promise-making and promise-keeping con-
straints in ¢ associated with this history. This accounts for the term 8 [A7" (o) + Af (o_)].%
Against this, an increase in w; (o) tightens the promise-keeping restriction in period t¢.
This accounts for the term A (o).

The multipliers A7 (¢) and ¥ (o) are important objects in the literature on Kydland
and Prescott problems, as highlighted by Marcet and Marimon (1998, 2017). The con-
trast between our policy recommendations and conventional Ramsey policy is easiest to

understand by reference to these objects, and we make extensive use of them below.

6.2.2 Preferences across promises

V (@s; xs—1) describes a preference ordering over the space 2 (z,_1), particular to the
policymaker in period s. This ordering can be denoted =3 :
@é i;}s_l LT);/ «—V ((Dé; Isfl) > Vv ((:)g; xsfl)

The next Proposition shows that policies that are undominated according to =7¢ in

allocation space are also undominated in promise space according to a Pareto criterion

Z3Recall that w11 (o) enters into the promise-keeping constraint (9) for the predecessor state o_ in t,
whereas it enters the promise-making constraint (8) for o itself.
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based on =7 . To formalise this, a lower contour set £ is defined in promise space as
follows:
L@ we) = {Ws €W 1l =% WL}

A Pareto criterion based on =%  that mirrors Axiom 2 can be defined on the space of

promises as follows:

Definition. Consider the promise sequence @, such that (XZ,a) solves Problem 1 for @/,
given some initial _,. @, is dominated by & if and only if there exists an € > 0 such
that for all ¢ > s, ||0f — @¢|| > € for all &y € L (©}; 2,_,).

A promise sequence @ dominates @, if at every t > s, the policymaker would rather
switch from @i to &f. Note that for this definition, the state x;_; is the one induced by
—/

L.

The interest in this derives from the following Proposition:

Proposition 5. Suppose (X},a.) solves Problem 1 for the promise sequence that it in-
duces, @., given some initial xs_1. Then (X,,aL) belongs to D (xs_1) if and only if &, is

not dominated by any alternative promise sequence.

Thus finding an undominated allocation is equivalent to finding an undominated
promise sequence for the outer problem. Undominated promise sequences are relatively

easy to identify, and can be characterised directly in terms of the multipliers A\}* (o) and
At (0).

7 Characterisation results

This section derives necessary and sufficient properties for policies that inhabit the set
D (x4—1) in all time periods. These ‘time-consistently undominated policies’ are the
main focus of our paper. The emphasis is on theoretical results that have the greatest
generality possible. Section 8 translates these into a more practical method for deriving

time-consistently undominated policy, and Section 9 presents direct applications.

7.1 Ramsey policy
We start by recasting the Ramsey problem in terms of the apparatus presented in Section

6. If this problem is posed in period s, then for an initial state vector x,_; it solves:

max V (Wg;Ts_1)
DSGQ(msfl)

Consistent with this, and making use of equation (10) above, Ramsey policy will generally
require:

A (0) = N2y () + Ay (00) (11)
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for [I-almost all o € X, t > s, and:
MN(o)=0 (12)

for IT-almost all o € X. Conditions (11) and (12) are familiar from Marcet and Marimon
(1998, 2017). The time inconsistency of the solution is immediate from the difference
between (11) and (12).

An important consideration for the current paper is whether, despite its time inconsis-
tency, the Ramsey policy at least remains undominated as time progresses, in the sense
set out above. It turns out that it does not, at least in environments where the time

inconsistency problem prevails indefinitely. Formally:

Proposition 6. Let (X.,a.) solve the Ramsey problem for period s, such that for all
t > s, \¥ (o) is bounded above zero for all o in a positive-measure subset of Y. Then for
allt > s, (x;,a;) ¢ D (z,_,).

So long as AF (¢) remains bounded above zero, time inconsistency remains. In these
circumstances, each period’s policymaker from s + 1 on would accept future promises
being less demanding, if inherited promise-keeping constraints were relaxed in return.
This delivers a strict improvement in every period, so long as promise-keeping constraints

continue to bind indefinitely along the Ramsey path.

7.2 Time-consistently undominated policy: necessity

This subsection provides necessary restrictions on policies that remain in D (z,_1) indef-
initely. In all cases the Propositions are stated in a way that is independent of equivalent
representations of the h function — and hence of promises. This implies slightly different
statements depending on whether difference comparability or ratio comparability obtains,
and the Propositions allow for this. The essential arguments are identical regardless of

the form of comparability.

7.2.1 Long-run dynamics

The first result relates to the long-run evolution of promise multipliers.
Proposition 7. Suppose that the policy (XL, al) is time-consistently undominated, given
some initial ©._,, and that V is differentiable at the induced promise sequence &,. If h is

difference-comparable then for Il-almost all o € X, either:

1. There is no period T such that both [\ (o) + Af (0-)] and X} (o) are bounded above

zero for allt > 7.

or .
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2. For all p € (0,1) and all positive scalars Ky and K, it is possible to find a 7 > s
and T > 1 such that:

r—1

. 1 r—T
wer <1l o)+ A o] (p>

t=T1

forallr >T.

Identical conditions apply when h is ratio-comparable, except that the multiplier objects
in part 1 are replaced by [N (o) + A} (0-)] wir1 (o) and A} (0) wy (o) respectively, and the

ratio in part 2 is replaced by:

r—1

A\ (o)
BN (o) + AF (0-)]

; (o)
(o)

W
wr (O

r t=1
We focus first on the difference-comparable case. Here the Proposition should be read
A (o)

BN (o) +AF (o-)]
ratio exists and is bounded above zero in the long run (part 1 of the Proposition), its

as a statement about the long-run tendency of the ratio . So long as this

compounded product from 7 onwards must be stable relative to any non-trivial geometric
process. The requirement that both [A” (o) + A¥ (o_)] and A} (o) are bounded above zero
for sufficiently large ¢ reflects a need that promises should not come to be irrelevant to
the allocation as time progresses. If the multiplier terms were to converge to zero, the
scope to improve welfare by changing promises would clearly be limited. The change to
Proposition 7 when the h functions are ratio comparable merely ensures invariance to a
change over time to the units in which w; (¢/) is expressed.

In the event that convergence in the multipliers occurs, a far sharper statement is

possible:

Corollary 1. Suppose that the policy sequence (XL, a.) is time-consistently undominated,

and induces multipliers \F (o) and X" (o) that converge to bounded steady-state values
N (a) and ™ (o) for all o € 3. Then under difference-comparability:

B[N: () + X5 (02)] = Al (0) (13)

Under ratio comparability the same applies, provided there is additionally conver-
gence in the promise values — something that can always be guaranteed by normalisation.
Thus when convergence is assured, time-consistently undominated policy mandates a very
simple equality restriction for the promise multipliers, at least in steady state. Again,
the contrast with Ramsey policy is worth emphasising. By equation (11), it is immediate
that if Ramsey policy converges to a steady state with bounded multipliers, these will

satisfy the relationship:
Aoy (0) + X5 (02) = X, (0)
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This is inconsistent with (13) whenever the multipliers are non-zero and g < 1.

7.2.2 Averaging policy preferences over time

Proposition 7 does not place any direct restriction either on the evolution of the promise
multipliers from one period to the next, nor on outcomes across different states o. The
next Proposition shows that time-consistently undominated policies must also satisfy
restrictions along both these dimensions, for ‘almost all’ time periods. The latter concept

uses the following:

Definition. Consider an arbitrary vector of variables z; € R™ and an arbitrary function
¢ : Z — R. For any time period 7 and any ¢ > 0, index by ¢ € {1,..., N} the set of
periods t in which |¢ (2;)| > €, with ¢ (i, 7, ¢) used to denote the time period in which the
1th occurrence of this inequality arises subsequent to 7. We will say that the restriction

¢ (2z:) = 0 is almost always true if for all ¢ > 0 and all 7, either N is finite or:

sup [t (i +1,7,e) =1 (i,7,€)] = 00

1

We have the following:

Proposition 8. Suppose that the policy (X.,a.) is time-consistently undominated, given
some initial z;_; € X. Then there exists a sequence of scalar values {au},, with oy €
(0,1] for all t > s, such that for Il-almost all o € ¥, under difference comparability

the following equality is almost always true:

a [A (o) + A (02)] = Ay (0) =0 (14)

and under ratio comparability this becomes:**

0 [N (0) 4+ M (02)] @ (0) = My (0) i (0) = 0 (15)

Note that the Ramsey optimality conditions (11) and (12) are special cases of (14)
with oy = 1 and a; = 0 respectively. The Proposition thus states that time-consistently
undominated choice for ¢ 4+ 1 is a weighted average of two extremes: what a prior pol-
icymaker, in ¢ or earlier, would like, and what a policymaker in ¢ + 1 would like. The
relative weight, oy, is identical across states o, though it can vary through time.?> In
this regard time-consistently undominated policy strikes a balance between the interests

of prior and contemporaneous policymakers.

24The wyy1 (o) in this equation does not cancel, because the definition of ‘almost always true’ is
scale-dependent.

31t follows from (13) that oy = 3 in steady state, if one is reached. But the Proposition does require
convergence.

29



The fact that o, > 0 in Proposition 8 is particularly significant, for two reasons. First,
it demonstrates that a Markov discretionary approach to policy design is dominated under
the ordering =7¢ except in trivial cases. Markov policy sets A\¥ (o) = 0 for all ¢ and all o.
So long as shadow benefits to making promises endure over time, i.e. A" (0) > 0 remains
true, this is not compatible with time-consistently undominated choice.

The second implication of a; > 0 relates back to Proposition 5, which established the
link between undominated policies and undominated promise sequences. This link was
qualified by the requirement that an undominated policy should solve the inner problem
for the promise sequence that it induces. This is guaranteed only if the promise-keeping
constraint is always binding. The Proposition demonstrates that a binding promise-
keeping constraint is a generic feature of time-consistently undominated policy, again so

long as the benefits from making promises remain positive.

7.3 Time-consistently undominated policy: sufficiency

Propositions 7 and 8 help eliminate important options, notably Markov and Ramsey pol-
icy, but for more constructive purposes we need sufficiency results. This section provides

general conditions that guarantee that a policy never comes to be dominated.

Proposition 9. Consider a policy (XL, a.) that solves Problem 1 for the promise sequence
that it induces, @l. The continuation of this policy (X3, a;) will belong to D (:L';_l) for all

t > s provided the following are true:

1. The value function V (@g; xs_1) is concave in ©s.

2. (a) There ezist positive scalars K and K such that for allT> s, 7 > 7 and 0 € 3,

under difference comparability:

r—1
A\F _
K < __ ) _ <K (16)
o BN (0) + AF (0-)]
or, under ratio comparability:
r—1 k
wr (o) |31 BN (0) + Af (0-)]

(b) There is a sequence of scalars {ou},- ., with oy € [, @] for all t and 0 < o <

a < 1, such that X" (o), A (0_) and A}, (o) converge across o € ¥ as follows:

i 18)

[ Mo (o) ] _
a; [\ (o) + Af (0]

where the rate of convergence is at least linear.
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In conventional optimisation problems it is standard for sufficiency conditions to be
limited to environments with concave objectives, and part 1 of this Proposition is required
for identical reasons. Without it, it would not be possible to reason from local derivative
restrictions to a global statement. Conditions for a concave value function are provided
in Appendix B.

The second part of the Proposition provides restrictions on the multipliers that are
slightly tighter that the necessary restrictions provided in Propositions 7 and 8. A policy
is time-consistently undominated provided the compounded ratio of promise multipliers in
(16) remains bounded, and provided its multipliers from one period to the next converge
to satisfying a common ratio oy across states — where oy may be time varying, and is only
restricted to lie in some closed range between 0 and 1.

The freedom in «; permitted under Proposition 9 indicates that it will usually be
possible to find many dynamic policies that are time-consistently undominated. This
was already demonstrated informally in the inflation bias example of Section 2, with
Figure 2 illustrating three alternatives. As the next Section illustrates, an alternative

representation of the problem provides an appealing route to resolving this issue.

8 Time consistently undominated policy as a time-consistent
optimum

In this section we show that time-consistently undominated policies have a parallel in-
terpretation as the time-consistent solution to a restricted optimisation problem. This
is central in allowing our approach to be operationalised, and to select a unige policy

among the mutliple time-consistently undominated options.

8.1 A restricted-dimension problem
8.1.1 Omne-dimensional promise choice

We will consider the problem of choosing a promise sequence &g from some restricted-
dimensional subspace of W, where this subspace is defined parametrically by reference to
a benchmark sequence @, € € (2,_1) and a set of possible vector movements away from
@.. In order for the analysis to be independent of arbitrary renormalisations, the available
vector movements will be defined in a way that is invariant to permissable rescalings of
the promise values. Once more, this requires the cases of difference comparability and
ratio comparability to be treated distinctly.

Irrespective of the form of comparability, we will define ds as an array of ‘slope pa-
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rameters’ &; (o), with &; (o) € [0,0] for all ¢ and o, and 0 < § < § < oo

5_5 = {{525 (U)}UEE}tZS

0 will denote an array of choice variables 0 () € R, independent of time:

0:={0(0)}gex

Notation is simplified by writing 65 to denote the array obtained by elementwise multi-

plication:
955 = {{0 (U> 515 (U)}UEZ}tES

and exp {955} to denote the array:

exp {065} := {{exp {0 (o) 6 (U)}}JEE}tZS

The realised promise choice @s will depend on the chosen value of 6, given &5 and @..

It is written as g (9; oL, Ss):

Wl +00s (difference comparability)
w,exp {06} (ratio comparability)

Note that in both of these expressions, varying 6 (o) allows o-contingent promises to be
changed along exactly one dimension for all time periods. A straightforward example of
restricted-dimensional choice was seen in the example of Section 2, when studying the

set of constant inflation-output combinations.

8.1.2 Problem

We will consider the following problem:

Problem 2. (Restricted Promise Choice)

Sup Vv ((Ds (97 wéa gs) ;xsfl)
OeR>

given . and ds.

Assuming that it exists, the value of 6 that solves this problem is denoted 6*, with
the resulting promise vector @} := W (9*; wl, 55), which is assumed to induce endogenous
state vector x} in period t > s.

Suppose that the solution to Problem 2 induces a promise sequence that belongs

to Q (z,_1), the interior of Q (z,_1). Then by standard calculus a necessary optimality
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condition for II-almost all o is:
ST B N (0) 8, (0) = 8 [N (0) + Ak (0)] b (0)} = 0 (19)

for the case of difference comparability and:

(e o]

S8 (M (0)w, (0) 5, (0) = BN (0) + A (0-)] @ (0) Gt (@)} =0 (20)
for the case of ratio comparability. If the value function is concave in &g then these

conditions are also sufficient.

8.1.3 Time-consistent choice

Problem 2 is time-consistent if the optimal choice #* remains the same through time.
This is the case of interest. If true, (19) or (20) must hold for all possible s, not just as
a one-off. This means that the forward sum will cancel, leaving a single within-period

restriction that must hold for all ¢ > s:
A (0) 0 (0) = BN (0) + MY (0-)] 01 (0) = 0 (21)
under difference comparability or:
A (@) wi (0) 0 () = B A" (0) + A (0-)] wsr (0) Gt41 (0) = 0 (22)

with ratio comparability.

Conditions (21) and (22) are within-period cross-restrictions on the multipliers for the
promise-keeping and promise-making constraints. By contrast with Ramsey policy, the
restriction in the dimensionality of the policy instrument 6 is offset by the requirement
for choice to be optimal in every period, so that a single multiplier restriction for each
period still obtains. Promises are chosen optimally for every period along one dimension,
rather than being optimal for one period in every dimension.

Suppose that &g indeed satisfies these conditions for all ¢. Then consider the following

product ratio under difference comparability:
r—1

¢ (9) _ 9 (9)
1 BN (@) + A (0-)] 6 (o)

t=s

The boundedness restrictions on 9§, (o) and J5 (o) imply that the object on the left-hand
side here must be bounded uniformly above 0 and below co in 7. Thus @} will satisfy

sufficiency condition 2(a) in Proposition 9, at least for this value of o. A similar argument
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applies under ratio comparability. Summarising as a Proposition:

Proposition 10. Suppose the value function V (©s;xs_1) is concave in @s. Then an
allocation (X*, &%), inducing promises @ € Q(z,_1), satisfies sufficiency condition 2(a)
of Proposition 9 if and only if there is a bounded sequence &5 such that &} solves Problem

: ; 5 — ok
2 recursiwvely, given os and O, = @7.

This follows from the foregoing discussion, and a formal proof is omitted.
The Proposition does not directly establish that recursive solutions to Problem 2 are
time-consistently undominated, as condition 2(a) of Proposition 9 is not enough for this

in isolation. The following corollary has more practical applicability for this purpose:

Corollary 2. Suppose the value function V (©s; xs_1) is concave in &g, and that differ-
ence comparability applies. If an allocation (X%, a%), inducing promises @7, solves Problem
2 recursively, given @, = ©F and some s, and induces convergence in the intertemporal
multipliers to steady-state values N7 (o) > 0 and ¥, (o) > 0 for Il-almost all 0 € 3, then
(X%, a%) is time-consistently undominated. The same result applies under ratio compara-
bility if in addition the promises w; (o) converge to steady-state values wi, (o) # 0 for
[T-almost all o € 3.

Steady-state convergence is not a necessary property for a time-consistently undom-
inated policy, but it is extremely simple to verify when it does arise. Indeed, the most
straightforward computational approach to solving for a time-consistently undominated
policy will be first to solve for a steady-state allocation, and then to compute convergence

to it. This imposes the convergence property directly.

8.2 Symmetry

The unresolved multiplicity in the set of time-consistently undominated policies, first seen
in the example of Section 2, is reflected in the number of free parameters that Problem
2 leaves open. Both the ‘intercept’ & and ‘slope’ ds are presently indeterminate. The
multiplier restriction (21) or (22) will place one cross restriction on these two choices, but
this still leaves one degree of freedom for each date-state.

The example of Section 2 also indicated that a symmetry refinement might resolve this
issue. Time-consistent selection from the (restricted-dimensional) set of constant policies
— an identical problem in each period — delivered the most appealing choice.

More generally, a well-defined version of symmetry is to require that whatever ver-
sion of Problem 2 recovers the chosen policy, this problem should give each period’s
policymaker exactly the same control over promises through time. The key step in the
argument is that ‘identical promise control’ must be defined in a way that is invariant to

admissible renormalisations. This invariance consideration is what ensures uniqueness.
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In both of the two comparability cases, it leaves just one possibility for symmetry to have
meaning.

Consider first a case of difference comparability. This means that level changes in the
promises are defined relative to one another, whilst the absolute values of the promises
are not. In this case a symmetric version of Problem 2 would require that d, (o) = d; (o)
for all t > s and all ¢ € Y. A necessary optimality condition from the resulting time-

consistent, problem in period ¢ is:
A (o) = B[A" (0) + X (0-)] =0 (23)

Equivalently, if ratio comparability holds then proportional changes in the promises
are all that is defined. A symmetric version of Problem 2 would again require that
ds (0) = 9, (o) for all t > s and all o € X, noting that J; (o) is the per-unit proportional

change to w; (o) in this case. The following restriction results for all ¢ and o
X (@) we () = BN (0) + A (0-)] wesa (0) = 0 (24)

Since a symmetric solution imposes the same multiplier restriction each period, it is
consistent with a steady state being achieved. Thus sufficiency can be confirmed easily

via Corollary 2.

9 Applications

We apply our method to three textbook time-inconsistency problems. These are, first,
a capital tax problem in the style of Judd (1985); second, a social insurance problem
subject to one-sided limited commitment constraints; and third, a dynamic moral hazard
problem in the style of Atkeson and Lucas (1992). Analytical workings are relegated to
Appendix D.

9.1 Capital taxation

We consider a variant of the optimal capital tax problem due to Judd (1985), with a
balanced budget restriction on government policy.?® This problem has recently received
renewed attention through the work of Straub and Werning (2015), who showed that the
Ramsey plan may not deliver zero long-run capital taxes, contrary to widespread prior

understanding.

26This restriction ensures a forward-looking implementability constraint that must apply in every
period, matching our general constraint (5).
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9.1.1 Setup

There are two types of agent in equal measure: a worker who supplies labour inelas-
tically and has no access to savings instruments, and a capitalist who does not work.
The government’s preferences are described by a weighted sum of these agents’ lifetime

utilities:

W=7 [u(c) + pu (cf)] (25)

where ¢ is consumption of the worker in period ¢, c¥ is consumption of the capitalist,
and p > 0 is the relative Pareto weight on capitalists’ welfare.

The period-by-period resource constraint is given by:
C;U + C? + g + kt < f (ktfl) + (1 — 5) kt,1 (26)

where k;_; is capital inherited in period ¢, g; is an exogenous level of government spending,
and the production function f takes as implicit the fixed level of labour supply.?” The
government taxes net capital income linearly, with the tax rate denoted 7. The resulting
funds are used to finance government spending and lump-sum transfers to workers, T;.
Since it must run a balanced budget period-by-period, the government’s choices must
satisfy:

(re—0) 7'k > e + T (27)

where 7, is the rental cost of capital. As is well known,?® this condition can be replaced
by an implementability constraint, expressed purely in terms of allocations. We write

this in a form consistent with (5) above:

o0

Uk (c]; + k) < Z B g 4 (28)

t=s

where subscripts denote derivatives in the usual way. Thus the function h° here corre-
sponds to gk (c’j + k‘s), and h corresponds to Uck7th.29 Notice that in general this may
not be consistent with concavity in h or convexity in h°. This means that the value
function will not be guaranteed to be concave.’® We will be able to derive necessary
conditions for an optimum, but sufficiency is not guaranteed. As noted by Lucas and
Stokey (1983), this problem is shared by conventional Ramsey analysis in the dynamic

tax literature. It is not a specific problem with our approach.

2"There are the usual constant returns in capital and labour jointly.

Z8Gee, for instance, Chari and Kehoe (1999).

Gince k, is a state variable, strictly it should not be included in the definition of h°. Defining an
auxiliary variable k, together with the additional restriction k, = k, would allow direct consistency with
the general presentation.

30See Appendix B.
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Condition (28) can be interpreted as an offer curve for the capitalist in each period,
given that the value of private savings must equal the value of future capital. The object
ucmcf corresponds to the value of the capitalist’s consumption in period 0. Proportional
changes to this have meaning independent of normalisations to the price level, whereas

level changes do not. Hence the h function is assumed to exhibit ratio comparability.

9.1.2 Time-consistently undominated policy

In Appendix D.1 we show that a symmetric time-consistently undominated policy can be

characterised in every period by the single condition:

ke {81 [1+ Srear1 — O] —mi} = Cf {77t - Huck,t} (29)

where 7, is the Lagrange multiplier on the resource constraint (26) in period ¢. Together
with (26), (28), and a simple first-order condition with respect to ¢}’ (equation (73) in
the Appendix), this is sufficient to close the model.

Condition (29) provides an intuitive statement of the trade-off that our policy strikes.
The objects in curly brackets can be read as ‘wedges’ relative to a first-best choice. On
the left-hand side is the capital wedge, multiplied by the quantity of capital invested
in period t. On the right-hand side is the wedge between the shadow cost of resources
and the marginal social value of giving income to the capitalist in period ¢, multiplied
by the value of the capitalist’s consumption. Intuitively, providing more spending power
to the capitalist is desirable to the extent that it boosts savings, and hence reduces the
capital wedge. It is undesirable to the extent that it provides resources to an agent
whose consumption exceeds the socially desirable level. Condition (29) balances these
two concerns.

A Ramsey policy would also incorporate these considerations, but is complicated by
an additional desire to tailor intertemporal consumption prices — proportional to wu. ; —
in a way that will be most beneficial from the perspective of period 0. In most cases this
gives it an extra degree of dynamic complexity by comparison. Lansing (1999), however,
highlighted that the Ramsey problem is substantially simplified when the consumption
utility of capitalists is logarithmic. In this case the implementability condition reduces
to:

ks o B
cs  1—-p
This is a static restriction, and so the problem is not subject to any time inconsistency

problem. This suggests that time-consistently undominated policy should coincide with
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Figure 3: Capital tax dynamics: time-consistently undominated policy

Ramsey choice for this case. Indeed, Ramsey policy is easily shown to require:3!

ke {Bnes1 [L+ frgar — 6) —me} = ¢} {77t — i (Cf)_l} (30)

The comparison with (29) confirms that time-consistently undominated policy coincides
with Ramsey policy when time inconsistency is absent.

Lansing (1999) shows that (30) is consistent with positive long-run capital taxes when
( is set sufficiently low. Straub and Werning (2015) showed that positive long-run capital
taxes are a general feature of the problem whenever o > 1 holds and p is sufficiently small,
with ¢ = 1 a threshold case. Our approach provides an alternative generalisation of the
o = 1 result. It also implies positive long-run capital taxes for small enough pu, but —
unlike the Ramsey solutions that Straub and Werning highlight — the simpler dynamics
in the promise multipliers relative to the Ramsey case prevent convergence to corner
solutions.

Figure 3 illustrates this. It charts the evolution of capital taxes and the capital stock
over time, for different values of the initial capital stock, given o = 2.32 All variables
remain in steady state, conditional on starting there. When the capital stock starts above
steady state, capital taxes start above their steady-state values, and likewise taxes are low
when the capital stock starts low. Capital income taxes take high values by comparison
with conventional results — in the region of 50 per cent. This reflects the fact that the

calibration puts zero welfare weight on the capitalist.

31This follows from conditions (74) and (75) in Appendix D.1.

32We assume p = 0. The production function is Cobb-Douglas with capital share of 0.33, and we set
£ =0.96, 6 = 0.05 and g; = 0.4 for all . The latter corresponds to steady-state government spending of
around 25 percent of GDP.
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9.2 Limited commitment

We consider a one-sided limited commitment model without savings, in which a contin-
uum of agents receives a stochastic income draw each period. The utilitarian government

provides social insurance, subject to a participation constraint.

9.2.1 Setup

Measure z € [0, 1) of the agents are guaranteed to receive a low income ¢! in every period,
whilst the remaining (1 — p) each period receive a high income 3" > ' with probability
p, and y' with probability (1 —p). The income draws are iid across agents and time,
and publicly observable. A utilitarian government seeks to smooth consumption across
indivduals, subject to ensuring that all individuals are at least as well off as under autarky.

In principle the policymaker has complete information about the entire history of
income draws for each agent. However, a sufficient statistic for computing both Ramsey
and time-consistently undominated policy is the number of periods elapsed since an agent
last received the high income draw, y”. Thus we let the exogenous stochastic variable
o € ¥ be defined as the number of periods since a given agent last drew y”, with 3 :=

(N U o00).33 The Markov process governing o for agents with stochastic incomes is thus:

o+ 1 with prob (1 —p)
0 with prob p

Agents with a fixed, low income have ¢ = oo in all periods.
Given the process determining o, the utilitarian policymaker ranks continuation allo-

cations from period s onwards according to:
W= S | ) S (1 )7 pu e (0)) + e (00) B1)
t=s o=0
There is no saving, so the aggregate resource constraint in period ¢ is:
(1) > (=) per(0) 4 pec(00) < [L— (1= ply + (L —mpy (32
o=0

The participation constraints can be written as:

E, Zﬁt_su (ci (04)) O’S] > V(oy) (33)
S B (e (00) > ?g’ﬁ) (34)

t=s

335 = 0o denotes an agent who has always received 1.
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where o, denotes the realisation of ¢ in period ¢, given an initial value o, € N in period

s, and V (o) is given by:

w(y") + 25 [pu") + (1 =p)uy)] ifo=0
u(y') + 125 [puly”) + (1 =p)u(y")] ifo >0

9.2.2 Ramsey policy

Ramsey policy in this environment has the well-known property that the cross-sectional
Pareto weight on agents who are exposed to income risk is non-decreasing over time.?*
In initial time periods the promise-making constraints only bind for agents who receive
a high income draw. This raises these agents’ within-period Pareto weights, and thus
their share of consumption. Since aggregate resources are fixed, the effect of this is to
reduce the share of consumption going to income-poor agents over time, until eventually
even those with permanently low incomes come up against their participation constraint
(34). The long-run allocation is one in which income-poor agents are given consumption
equal to y' in perpetuity. These dynamics are charted in Figure 4, for an illustrative

calibration.?®

9.2.3 Time-consistently undominated policy

Under symmetric time-consistently undominated policy, allocations satisfy the condition:

u' (e () (14 BN (0)) = e (35)

where A} (0) is the multiplier on the promise-making constraint for an agent receiving a
high-income shock in ¢, and 7; is the resource multiplier.

Thus there is geometric decay at rate [ in the ‘augmented’ component of Pareto
weights, cross-sectionally, at each point in time. An individual whose current income is
high will receive a Pareto weight of 1+ A}" (0), where A\}" (0) must be set sufficiently high
that this individual wishes to continue participating in the insurance scheme, given the
future allocation. An individual whose income was high one period ago (but not today)
receives a current Pareto weight of 1+ 8\ (0), and so on. Individuals’ allocations depend
on their exogenous history, but there is no dependence on past multipliers. The consump-
tion allocation is time-invariant, and the resource multiplier 7; is constant through time.
This means low-income individuals are forever able to consume at a level that is elevated

above their income — a permanent social security ‘safety net’.

34 Appendix D.2 provides details.
35Consumption utility is isoelastic, with o = 1, and 8 = 0.96. We set y" = 10 and y' = 1, with
p=10.01 and p = 0.2.
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Figure 4: Consumption dynamics: TCUP vs Ramsey policy

Figure 4 contrasts outcomes under the Ramsey and time-consistently undominated
policies. The first panel charts the evolution of consumption over time for an agent who
receives a high-income shock, conditional on low income thereafter. It compares time-
consistently undominated policy with the dynamics that arise in the Ramsey steady state.
As the discussion indicated, consumption decays far more rapidly under TCUP policy
than Ramsey, because of the active decay in Pareto weights. A counterpart to this is
that consumption levels must be higher under TCUP policy immediately after a shock,
so as to preserve participation incentives. The second panel charts the consumption
of permanently low-income agents over time. It confirms that Ramsey policy ultimately
drives even permanently low earners against their participation constraints. TCUP policy

does not.

9.3 Asymmetric information

Finally, we consider a variant of the insurance problem with hidden information due to
Atkeson and Lucas (1992).

9.3.1 Setup

The economy receives an aggregate endowment of real income Y in each period, and
has access to a linear savings technology with gross rate of return R > 1. This income
must be divided among consumers, who receive unobservable idiosyncratic shocks to their
marginal utility of consumption over time. An individual’s lifetime utility from period s

onwards is:

Es

Z B 0,u (ct)] (36)

t=s
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where 6, € {#',6"} is a disturbance to the marginal utility of consumption, with 6" > ¢'.

This is iid across agents and time, following the process:

0 6" with prob (1 — p)
t pu—

0" with prob p

We normalise so that 6 := (1 — p) @' + pf" = 1. The infinite history of an individual’s ¢
draws up to a given period t is denoted by oy, with o, := {6;,60;_1,0, 2, ...}, and ¥ is the
set of such histories. Time subscripts are omitted from o where no confusion will arise,
and we will use (o, 0) to denote the history ‘o followed by ¢’. Knowledge of this history
on the part of the policymaker is assumed in ¢ for all agents, though it would not change
the analysis if this were generated fictitiously for periods prior to 0.

The period-by-period resource constraint is:
/ ¢ (0)dll(0) + B, <Y + RBy 4 (37)
oeY

where B; denotes savings in real bonds from ¢ to ¢+1. The utilitarian first-best allocation
would imply a higher within-period consumption level for agents who draw 6". Since 6
is private information, this gives agents with #' an incentive to mis-report. Accounting
for this, a second-best solution must satisfy an incentive compatibility restriction to

guarantee truthful reporting:

E, | Y 870 (ci(00)| 00| > By | > B 0u(c (61 (o)) aS] (38)

where 7, : X — X denotes an arbitrary reporting strategy for all ¢, restricted to be self-
consistent through time.?® Note that (38) takes the form of constraint (6) rather than (5),
for which the general analysis was developed. The extension of the main necessity and
sufficiency proofs to this case is straightforward, and developed in Appendix C. It is easy
to show that the only binding incentive compatibility constraint will be the restriction
that low types should wish to report truthfully, and we proceed on this basis in what

follows.

36That is, if o’ is a possible successor history to o, 7,41 (0/) must be a possible successor history to
&4 (o) for all ¢.
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9.3.2 Ramsey policy

A characteristic feature of Ramsey-optimal choice in this environment is that it satisfies

the so-called ‘inverse Euler equation’, given in this case by:3"

1

Uey (¢t (04))

1

o 1| =K
t 1} tl {Uc,tﬂ (cey1 (0¢41))

With standard preferences we have that u.; > 0, and so both sides of this equation

BRE, [

atl] (39)

are bounded above zero. In the event that R < 37!, (39) is a supermartingale in the
object:
1

e (¢ (00)) 0’*‘1]

and so this object must converge a.s. to a finite limit. It is possible to show that there

-

are always incentives to induce consumption differentials so long as consumption remains
positive, so the implication is that consumption converges to zero for Il-almost all type
histories in X as time progresses. This is the well-known ‘immiseration’ result, variants
of which were first discovered by Green (1987) and Thomas and Worrall (1990).

9.3.3 Time-consistently undominated policy

Under a symmetric time-consistently undominated policy, the equivalent condition to (39)
is a period-by-period cross-sectional restriction on individuals’ inverse marginal utilities,

relative to a benchmark:

1 1
E | =
! Ue,t (ci(0,0)) e

1 1
U_} = PR [Uc,t (ci(0-0)

0_} (40)

where o is a successor history to o_, so that (o, 0) is a history realised two periods after
o_, and n; is again the shadow value of resources.

Thus the average value of the inverse marginal utility of consumption in period ¢, taken
across agents who received the given shock history o_ up to a period ¢t — s, converges to
% at rate 3 as s increases. In the event that R = 371, 1, will be constant through time,
and the outcome will be a time-invariant consumption distribution. The immiseration

result no longer applies.

10 Conclusion

Kydland and Prescott problems are environments where it is not possible to choose
optimally, all of the time. The challenge for normative policy design is whether to respond

to this with a choice that is optimal at just one point in time, or to try to find an

37See Appendix D.3 for derivation.
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alternative approach to choice that can be implemented in all periods. The purpose of
our paper has been to explore the second option. The outcome of this that we propose
— time-consistently undominated policy — is particularly interesting because it mandates
simple, normatively appealing choices that differ from the Ramsey benchmark both in
the short run and the long run. We have shown this both in a general setting, and in a
number of textbook examples.

Formally, our analysis is purely normative. It assumes that the policymaker can com-
mit perfectly to a sequence of future choices, and does not analyse the positive question of
whether this commitment can be supported in a noncooperative equilibrium.?® But the
commitment assumption does raise a positive issue of its own. If it were indeed possible
for the policymaker in period 0 to commit to any feasible policy, why would they ever
fail to select the Ramsey-optimal choice?

A simple answer to this is that in practice governments simply do not appear to design
policy rules that exhibit the date-contingent character of Ramsey policy. No central bank,
for instance, has an inflation target that depends on the number of years elapsed since
the delegation framework was first devised. There appears to be a practical desire to
avoid arbitrary time variation in policy, and a theory that enables this formally can only
aid macroeconomic policy design.

A more subtle response relates to the connection between the choice procedure and the
commitment assumption itself. In reality no society has access to a perfect commitment
device ez-ante, resistant to all conceivable challenges. Laws can always be repealed, and
constitutions amended or rewritten.?* But a commitment may be particularly exposed to
challenge if its continuation cannot be justified by reapplying the principles that selected
it in the first place. If an optimal policy was appropriate yesterday, why not today? The
normative principles that we set out in this paper allow choice that will be robust to this

sort of challenge. In itself this may make the commitment assumption far more credible.
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A Proofs of Propositions

Proof of Proposition 1

As noted in the text, it is simple to show that the optimal constant policy implies the

following values for y; and 7y for all ¢:

c X(l_ﬁ)Q *

T - "

7_‘_? _ X’Y(l_ﬁ) - * (42)
Y+ x(1-=75)

For this policy to be dominated in some period s, there would have to exist an al-

/

L) such that the loss associated with (the continuation of) this

ternative policy (¥.,7

policy is strictly lower in every period from s on. The constraint set is linear and the
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loss function is convex, so this in turn implies that a differential movement from (y<, 7<)

along the vector [(¥S,7S) — (¥4, 7L)] must be welfare-improving at the margin. Denote

dyr  dmy
dA dA

Since policy choices under both alternatives are bounded for all ¢, the derivatives must

. . . oo . . .
the corresponding sequence of derivatives { +_,» Where A is a normalisation factor.

also satisfy a bound: dm} < II and dyt’ <Y for all t and some II and Y values. Since

(yL,7L) is a strict improvement on (¥S, 7<) for all » > s, by definition there must exist

some value 6 > 0, independent of r, such that the following is true for all r > s:
Ldm d
t—r t Yt
— - — > 4
E B { Xy A] 0 (43)

From the Phillips curve constraint, we know:

dyt 1 dﬂ't d7Tt+1
A il 44
dA {dA dA (44)
Substituting this into inequality (43) gives:
Bxy = dr <, dmy
R BNyl I Ay o e (45)
Y+ x(1-B) tz—; dA t—zr;rl dA
Define D, := ;2 p"~"492t Notice that since 2% is uniformly bounded in absolute value

for all t, D,, is unlformly bounded in absolute value for all r. But condition (45) can be
rewritten as:
Dy1 <D, — 4 (46)

- -1
where 0 := 0 [%y*] > 0. Since this must hold for all » > s, the boundedness

of D, is contradicted.

Proof of Proposition 2

Suppose the alternative allocation (X}, a;) € T,NZ7 (z]_,) was strictly preferred to(X;, a})
in period t > s under W,. Since preferences are recursive, the composite allocation
(&1 x}), (a1, a})) would then be strictly superior to (XZ,a}) from the perspective

of period s. But since 7y is complete, this composite belongs to 7; N =9 (xs_1). This

contradicts (X%, aZ) being in the arg max set in period s.

Proof of Proposition 3

The two conditions required for a time-consistently comparable set are set out in the
definition in Section 4.2.1. The ‘if’ part of the Proposition is straightforward. Complete-

ness (part 1 of the definition) is true by assumption, so only condition 2 in the definition
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needs to be confirmed. This follows immediately from (9), which guarantees that any past
promises that (X}, a}) keeps must also be respected by all other policies in the constraint
set, for all t > s.

For ‘only if’, suppose first that an allocation (X%, a%) € 7T; violated (8) for some o and
t. By the completeness of T;, we have ((Xt*,%{,,), (af",a},,)) € 7T,. But since wj,, (o)
is generated by (X{,,,a; ), this allocation violates (5) for the given o and ¢. This is
inconsistent with 7, C =".

Suppose instead that (XZ,a%) € 7 violates (8) when o = 0y in some period ¢. As-
sumption 2 together with the continuity of & and h° and compactness of A, (Assumption

4) implies it will always be possible to find a;_; such that, for this o;_; realisation:

o0

Eiq1 | (@—1 (Ut—l) 70t—1) + 5 Z Bh (a;ﬁ (O-t+T) 7Ut+7)

7=0

Ut—l] = h' (&t—l (Ot—l) 7Ut—1)

(47)

Now consider the composite allocation ((a:j,)_cgﬂ) , (a?,éﬂc“)) € 7T;. The maintained

Ut—l]
Ut—l}

Thus the composite allocation violates a prior forward-looking constraint that (Xj,a})

hypothesis is:

Eiy [h(af (1), 00) + By ()| ova] < wi(or)

o0

Z BTh (aéw (Ot4r) 0t+r)

=0

= E

Combining this with (47) and using the definition of w;_  (0y):

Eiq {h (G¢—1 (0¢-1) ,00-1) + B

hag (o¢) , 00) + Z pTh (a::+r (0t4-) aUt+T)]

T=1

< R (G¢—1 (0¢-1) , 0¢-1)

satisfies. This contradicts condition 2 of the definition of a time-consistently comparable

set.

Proof of Proposition 4

For part 1 suppose otherwise, and take an allocation (X,al) € D (zs_1) that does not
solve Problem 1 for the promise values that it induces. Then there is an allocation
(xZ,al) in the constraint set for Problem 1 with (X7,aZ) >~ (X,al). But belonging to
the constraint set for Problem 1 implies that (X[, al) satisfies conditions (8) and (9) for
the promise values that (X[,a)) induces. Thus (by Proposition 3) (X,aZ) belongs to a
complete set of allocations that is time-consistently comparable to (X.,a.), and so by

Condition 1 (%7,a”) =7¢ (x.,a.). This contradicts (X,,a.) € D (z,_,).
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For part 2 it is sufficient to show that any feasible set of allocations that is time-
consistently comparable to (XL, al) must belong to the constraint set for Problem 1, given
the promise values that (X,,a.) induces. This is true under Assumption 2, as Proposition
3 established. Since (X[, a.) is an optimal choice for Problem 1, constraint dominance is

not possible.

Proof of Proposition 5

Take the ‘if” part of the claim first, and suppose otherwise — so that @, is undominated, but

(XL,al) ¢ D (xs_1). That is, there is no alternative promise sequence . that dominates

/
s—1>

. when the initial state vector is z._;, but there is an alternative allocation (X7,al) €
=9 (2/_,) N =" such that (X!, a) =7¢ (X,,a.), where =9 (2_,) is an irrelevant extension
of 29 (2/,_,). Since (X},a,) solves Problem 1 for the promise sequence that it induces,
(x”,a") =TC (x.,a.) cannot be applying through constraint dominance. Thus we must
have X! = X[, and preference dominance applying such that (X},aj) > (Xi,a}) for all
t > s, and at the limit as t — oc.

Consider the promise sequence that (X, a?) induces, denoted &/ If (X},a}) € 29 (z]_,),
then it is immediate that @, dominates @, since a switch to @i can guarantee at least
as desirable an outcome as (X}, ay) for all ¢t > s. Thus (X],a’) ¢ 29 («/,_,). But then it
follows from the definition of irrelevant extensions that there is a set of alternative alloca-
tions (x{’,ay’) € 29 (xj_,) NE=" for all t > s (with the chosen (X{’,a}’) potentially varying
in t) such that (%{,a}) =T (x,,a}). This ordering either applies through constraint
dominance or preference dominance. For constraint dominance to apply, by Proposition
4 each (X{’,a}") must satisfy the constraint set for Problem 1 generated by the promise
sequence g, and deliver higher welfare than (X, a) for all t > s. Since (X{,af) in turn
delivers higher welfare than (X{,a;) for all ¢ > s, including at the limit, it follows that
oy e @ for all £ > s, including at the limit — a contradiction.

The only remaining possibility is that (x{’,a}’) =7¢ (X},a}) holds by preference dom-

inance for all t > s. In this case X!/ = X, and it is immediate that the promise sequence

that (X,,a.') induces, say @.’, dominates @.. This contradiction establishes the first part

S

of the result.

For the ‘only if” part, suppose otherwise — so that @, is dominated, but (X.,a.) €
D (z,_1). That is, there is no alternative allocation (XZ,a;) € 29 (2,_,) N Z" such that
(x:,ar) =T¢ (x.,a.), where =9 (2/_) is an irrelevant extension of 29 (2/_,), but there
is an alternative promise sequence @, that dominates @, when the initial state vector is
x’_,. Since (XL, al) solves Problem 1 for the promise sequence @., this means that for
all t > s (and at any limit as t — co) there exists a sequence (X{,ay) € 29 (zj_,) N E"
such that (X{,a}) > (Xi,a}), with (X{,ay) satisfying the constraints for Problem 1 when

the promise sequence is @y. Denote by W/ the value of the social welfare criterion
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when (X{,ay) is implemented, and W, when (Xi{,a;) is implemented. Likewise, 7} is

used as shorthand for ) o7 (a;(0¢),0:) Il (0:), equivalently for r/, and so on. 7 :=
SUDg,eA D gex " (a1 (1), 0¢) 1L (04) is an upper bound on 7, whose existence follows from
Assumption 4.

By the definition of dominance, there must exist an ¢ > 0 such that W) — W/ > ¢
for all t > s. For all t > s, let r}” € [r}, 7] be some number chosen so that the sequence

{r'} ., satisfies the following inequality for all ¢ > s:

€
S8 ) e |5 W = W)
T=t
W/ — W] > e implies that for all ¢ > s there must exist a 7 > ¢ such that r; < 7, so there
is always scope to satisfy this inequality by a choice of ¢ sufficiently close to zero. By the
normalisation in Section 3.4.1, it is always possible to find a sequence a2 € A such that a’

induces the promise sequence @, and implies a value for the policy criterion of ;" for all

t > s. Now suppose the constraint set =9 (x;_l) is expanded to =9 (x;_l) U (XL,ay), and

let W}” be the value of the discounted social welfare criterion in period ¢ when (X[,al’) is

implemented. By construction, (X;,a}’) induces a promise sequence that is also satisfied
by (X¢,ay) for all ¢ > s, and W/ < W/ for all t > s, so (X{,a]) constraint-dominates
(x;,a;") for all t > s. Hence 29 (2/_;) U (X,,aY) is an irrelevant extension of Z9 (z/_,).
But W/ =W/ > 5 > 0forallt > s, and (X,a') and (Xg, a;) imply the same state vector

in every period, so (%,,a”) =7¢ (x.,a.). Hence (X,,a.) cannot belong to D (z,_;).

Proof of Proposition 6

Let @y be the promise sequence induced by the Ramsey allocation, and consider the direc-
tional derivative dy (JJ{, A v_vt) for some t > s. Rearranging the result in Proposition

13, this derivative will be given by:
oy (@y, 2)_y; W) = —/ M () w, (o) dIT (o)
oEX

=3 [ A @2 )] - @)} (o) ()

T=t+1

_ / M@wo)di ()

where w; (¢) € R? denotes the component of Wy particular to date ¢ > s and state o € 3,
o_ is the predecessor history to o, and we have used the Ramsey optimality condition (11)
to simplify. The result follows by noting that any vector of derivatives wg with w; (o) < 0
for all ¢ and all o in the specified positive-measure subset of ¥ will deliver a marginal

improvement in V' (J),’:,a:;fl) for all ¢ > s, bounded above zero. Thus by Proposition 5,
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(X{,a}) cannot belong to D (z}_,) for any ¢ > s.

Proof of Proposition 7

By Proposition 4, if (X}, a;) belongs to D (z]_,) for all ¢ > s, (X}, a}) must solve Problem
1 for the promises that this allocation induces, denoted wi. Thus by Proposition 5 it must
be the case that wi is undominated according to the ordering >‘;£_1 for all t > s. Note
also that the assumption V is differentiable at the chosen promise sequence implies that
w; must be strictly interior to Q (z,_1). As above, let dy (@5, z,_;; W) be the directional
(Gateaux) derivative of V' (@}, z),_,) as @ is varied along dimension Wy, and note that W,
is required to be an element of the same vector space as @, (with w; (0) € R’ denoting the
component of Wy particular to date t > s and state o € X). If h is difference comparable
then this is the space of promise sequences with bounded element-wise differences from
one another. These differences will be invariant to any equivalent representation of the
promises. If A is ratio comparable then the relevant space is the space of promise sequences
with bounded ratio differences from one another. Again, these differences will be invariant
to equivalent representations.

As Proposition 13 shows, the derivative at differentiable points can be written as:
Ov (@, o ;W) = B / {B N (o) + Af (02)] wegr (o) = Af (o) wy (o) } dI1 (o)
t=s oeX

Now fix some o € ¥, and suppose that there is a period 7 such that the terms
[\ (o) + Af (6-)] and Af (o) are both bounded above zero for all t > 7. For each period
t, consider the within-period component of the previous derivative expression, particular

to o:

BN (0) + A (0)] wiga () = M (0) wi (0)

By the fact that the multiplier terms are bounded above zero, for any given w; (o) it
is possible to make the preceeding expression exceed any arbirtary constant ¢; > 0 by

choosing w41 (o) to satisfy:
BN (0) + A7 (02)] werr (0) = A (9) wi (0) > & (48)

Difference-comparable h  We first proceed under the assumption that A is difference
comparable. In this case, the Gateaux derivative is defined for a bounded sequence
{w; (0)},~. for any o € X. If this sequence is such that inequality (48) can be satisfied
for all ¢ 2_ T for a sequence of ¢, values bounded above zero, and if this is true for all o in
a positive-measure subset of X, then the differential movement w, will generate a strict
improvement for all policymakers from 7 onwards, contradicting that wi is undominated

according to the ordering >, ) for all t > 7.
t—
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Suppose first that there is geometric convergence in the product Ht . W

to zero, i.e. for any 7 > s there exists a p € (0,1) and K > 0 such that for all 7" > 7:

T-1

Af (o)
o B (0) + A (0-)]

Kp'™™ >

Then let w, (o) > 0, and for all t > 7 set w1 (o) > 0 recursively to satisfy the condition:

X (0)
BN (o) + A (0-)]

Wiy (0)

. (0) > (1+7)

(49)

for some v > 0 such that p (1 + ) < 1, together with some lower bound w1 (¢) > w > 0
and an upper bound w1 (0) < w < co. This upper bound is possible, because we have
that:

Kpa+)"" > 1+7TTH +)Ak( 5]

and the object on the left-hand side converges to zero, whilst the existence of the lower

bound is trivial. Given these values for the sequence {w; (o)}, ,, set & to satisfy:

)‘f (o) i €t

BN (o) + X (o)) BN (0) + AF (0-)] w (o)
At (0)

BN (0) + Af (0-)]

= (1+7)

or:
e = YA/ (0) we (o)

Using this in (49) confirms that (48) is satisfied, and the bounds on A (o) and w; (o)
imply ¢; is bounded above zero as required.
The alternative possibility when the multipliers are always strictly positive is that

T—1
1 At (9) -
K (p) < 1= RGeS for some K > 0 and p € (0,1). In this case choose

some v € (0,1) sufficiently small that (1;7) > 1. Let w, (0) < 0, and for all t > 7 set

w1 (0) < 0 recursively so that the following is satisfied:

A (o)
BN (o) + AF (0-)]

w1 (0)

wy (0)

together with the bound:

< (1-9)

(wiy1 (0)] > w

for some w > 0, and a similar upper bound. The existence of w follows from the fact
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that: .
A (0)

1— T—1 Ty
0< K<7) <=2l BN (o) + Af (0-)]

t=T1

for all T', and 1_77 > 1. Now let &; be defined for all t > 7 by:

)\f(g) 1 €t
B (@) @] B @) T A 0] w ()
o A (0)
= U S o) N o)

So that:
e = =YL (o) wy (o)

which is bounded above zero for all . Thus there is a strict improvement in all periods,

again contradicting that @; is undominated according to the ordering >, ) forall t > 7.
t—

Ratio-comparable ~ When h is instead ratio comparable, the main formal adjustment
to the proof is to take the Gateaux derivative as a bounded sequence of proportional
deviations from the individual promises w; (0): {w; (0)},s. = {W (o) w; (0)},~,, with
{w; (o)} satisfying a uniform bound in ¢ for any o € X. These proportional Chaglges are
independent of any admissible renormalisation by definition, and so can be generated by
taking limits from alternative promise sequences that live in the same vector space as
@! 4% Again, if this sequence of differential changes is such that inequality (48) can be
satisfied for all ¢ > 7 for a sequence of ¢, values bounded above zero, and if this is true
for all o in a positive-measure subset of ¥, then w; cannot be undominated for all £ > 7.

The argument then proceeds in a similar way to the difference comparable case. Sup-
we (o) At (o)
wi+1(9) | B[N (0)+AF (o))
i.e. for any 7 > s there exists a p € (0,1) and K > 0 such that for all 7" > 7:

pose first that there is convergence in the product HtT:_Tl

to zero,

T-1

A (o)
11 BN (o) + AF (0-)]

t=1

w, (o)
wr (0)

Kp' 7 >

Then choose an initial @, (o) with |@, (o)| > 0 and sign (10, (¢)) = sign (w, (0)), and for
all ¢ > 7 set w41 (o) such that sign (W11 (0)) = sign (w1 (0)) and Wy (o) recursively

satisfies:
A (o)

BN (o) + AF (0-)]
for some v > 0 such that p (1 +7) < 1, together with some lower bound w4, (¢) > @ > 0

wy (0)
Wit (0)

‘M
wy (0)

> (1+7)

(50)

and an upper bound @, (¢) < @ < co. This upper bound is possible, because we have

40Part 1 of the Proposition implies w; (¢) > 0, so the use of this as a reference point in defining the
derivatives is not restrictive.
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that:
T—-1 wT(O>

aqw(a)

Klp(+9]"7" > (1+9) 11 B (j)Er)Af (0-)]

t=T1

and the object on the left-hand side converges to zero, whilst the possibility of the lower
bound is trivial. Note that if sign (w; (0)) = sign (w41 (0)), condition (50) simply states:

A (o) wy (o)
B (o) + A (0-)] it (0)

Wy (0)

0 (0) >(1+7)

whereas if sign (w; (o)) # sign (weiq (0)), it implies:

G wi (o)
BAT (o) + A (0-)] wena (o)

Wiy (0)

Wy (0)

<(1+7)

Given the sequence {w; (o)}, ., set & to satisfy:

Mo (o) wy (o
B [A? (0) + M (o_

= (1+9)

€t

T B ©) M (0)] wren (0) 1 (0)

)
)] wi1 (0)
At (o) wi (o)
BN (o) +AF (0-)] wita (o)

or:
e =Y\ (o) w (0) e (0)
Using this in (50), and multiplying through by 8 [\ (o) + AF (0_)] wi1 (o) ¢ (o), con-
firms that (48) is satisfied,"’ and the bounds on A (o) w; (o) and @, (o) imply & is
bounded above zero as required.
T—
1 i () B
The case where K <p> RCEYes) for some K > 0 and p €

(0,1) can proceed by a symmetric adJustment to the proof from the difference-comparable

case.

Proof of Proposition 8

The proof adopts the same approach as for Proposition 7, showing that a differential
change to promises can generate an improvement in all periods when the stated conditions
are not met. We first show that there must exist an a; > 0 such that the equality in the
proof is almost always true, with the bounds on «; established subsequently.

Suppose that there does not exist an «; such that the equality in the proof is satisfied
in ¢ for II-almost all . This means that in ¢ there must be at least one degree of linear in-
dependence across (positive-measure values of ) o between the values of [\ (o) + A} (0_)]

and of A, (¢). Hence, under difference comparability, it is possible to find bounded

“INote that the sign of this expression will be negative if and only if sign (w; (0)) # sign (wiy1 (0)).
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differential changes {w;11 (0)},.5, such that the following two restrictions are met:

/ @) wn (@) = 0 (51)

/ez [\ (0) + Af (02)] wigs (o) dIl (o) > 1 (52)

Now, if the requirement in the proof is not satisfied, then it is possible to find is a
positive-measure subset of ¥ that violates condition (14) by at least an amount ¢ at least
every 1" periods, with ¢ > 0 and T finite. Thus at least every T periods it must be
possible to satisfy conditions (51) and (52) with values for w; (¢) that are bounded in
absolute value below some w, uniform in ¢, and bounded away from zero for a positive-
measure subset of 3. Hence a strictly positive differential improvement is available of
an amount at least equal to 37! in each period, applying the same logic as in the
previous propositions. This contradicts that the original policy was time-consistently
undominated, given Proposition 5. The case of ratio comparability proceeds on the
same lines, normalising the derivatives by the promise values to preserve invariance.

We next show that a; < 1 can be imposed. Suppose otherwise. Then under differ-
ence comparability there must exist a 7' < oo such that for all ¢ in a positive-measure

subset of X, in every period t there is a period ¢ + 7 with 7 < T" and:
Air (o) + )\f—i-T (0-) - )‘f-s-r-s-l (0) <=6

for some 6 > 0. Now consider the differential change to s given by Wy such that
wyyr (0) = —1 for all date-states in which this inequality is true, and zero otherwise. In

all period t + 7 this delivers a differential improvement in o-specific value given by:
AL (0) = N (02) + X (0) 26 >0
and in period t + 7 4+ 1 the improvement is:
Miri1(0) 26>0

Hence at any given t, for each state o in the relevant subset of ¥ there is a feasible
differential improvement at least equal to 87 ~14. Since this is true in a positive-measure
subset of X, the improvement is bounded above zero in value when assessed in any period
t > s, so the original wg is dominated. A near-identical argument applies under ratio
comparability, allowing for normalisation by the promise values.

Finally, we show that a; > 0 can be imposed. Then under difference comparability

there must exist time periods ¢ such that for a positive-measure subset of o, the following
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are true:

M)+ A (o) > 6
)‘fﬂ(o') =0

Consider a differential change w1 () = 1, applied in all such date-states. The marginal
value of this is at least §0 for state ¢ and date . When the claim in the Proposition
is not true, there is always a time period within 7" of the current date such that these
gains can be realised for a positive-measure subset of states o. Thus again there is a
boundedly-positive marginal improvement available in net present value at every point in
time, contradicting that the original policy was time-consistently undominated. Again,
the case of ratio comparability proceeds symmetrically, setting w; 1 (o) = |wis1 (0)]

in this case, to preserve invariance.

Proof of Proposition 9

We present the main proof under difference comparability. Quasiconcavity of the
value function implies, by the usual logic, that the absence of marginal gains from mov-
ing allocations along a given vector dimension will also ensure the absence of discrete
gains. Thus, applying Proposition 5, it is sufficient to show that when the three spec-
ified conditions are satisfied, there is no marginal change to the promises wg such that
6 (V (@, z)_,) , W) will be bounded above zero for all ¢ sufficiently large, including at
the limit as ¢t — oo.

We start with two definitions. It aids the proof to define the scalar 7, for t > s

recursively by:

and for ¢t > s:
a1

U 3 Me—1

Note that 1, > 0 for all ¢, since oy € (0, 1).
In addition, for all t > s and o € ¥, define A; (¢) as a measure of the deviation from
the limit in Condition 2(b):

At (0) (1+ A (0))
a [N (o) + Af (0-)]

=1 (53)
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Note that linear convergence implies that the product:

T

[Ta+a(0)
T=t
converges to a finite positive constant as r — oc.
Condition 2(a) in the Proposition states that the following object is bounded above

zero and below oo, uniformly in r, for all o € X:

r—1

A; (o)
BAF (o) + A (0-)]

t=1

Applying the identity (53), this can be rewritten as follows:

r—1
4
Hl—l—At (54)

Since the final product term in (1 + A (o)) is bounded, it follows that the object ;\\28 b

must likewise be bounded above zero and below oo, uniformly in r, for all 7
We can further define \¥ (o) by:

3 (0) = niA (0)

Notice that the boundedness of :\\iggf]—: implies that X,’f (o) is bounded above zero and
below oo in ¢ for all o, irrespective of the convergence properties of A\F (o) and 7.

Now suppose, contrary to the claim in the Proposition, that there exists an alternative
promise sequence @s that is bounded away from the lower contour set of @, for all t > 7,
and some 7 > s. We first translate this into a derivative statement. As shown in

Proposition 13, the Gateaux derivative in all periods ¢ > 7 satisfies:

b (T ) = D5 / ABDY @)+ X 0] w1 () = X (0w (o)}l (0)

where w, (o) is the marginal increase in the date-state-specific promise w/. (0). Using the
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definition of A, (o) above, this can be rewritten as:

v (@) i) =S4 /

r—t oceX

{3 @) 1 10+ 8 @ s () = X (@) ) a0

Since AF (o) is not guaranteed to be bounded (above or below) in ¢, this object need not be
bounded, which in general will not allow us to reason from finite differential improvements
in V to boundedly positive gains in promise space and vice-versa.*?> To overcome this,

we can normalise it by 7, giving:

Ov (@, T)_y; W) _ Z gr-tr /GE {S\fﬂ (@) [1+ A, (o) wgq (o) = X (o) wy (U)} dl (o)

Tt —t Tt

This is equivalent to rescaling the value function in ¢ by the factor % By the recursive

definition of 7;, we have:

6" tnr Hoz7<oz -t

with @ < 1, so the boundedness of S\fﬂ (0) and convergence of A, (o) (Condition 2(b))
Sy (@) _y5%)
e
uniformly in ¢ by the definition of the derivative. It follows from the concavity of V' that

implies we have lim;_, sup, < 00, recalling that w, (o) must be bounded
the alternative promise sequence @y := (0; + awy) is bounded away from the lower
6 =/ / —

v (@hot % > ¢ holds for all t > 7, some 7 > s

and € > 0. Thus an improvement requires a derivative vector with the property:

contour set of w; for all ¢ > 7 only if

Sat [ R @A @ @) - @@} i) = (5

u

r=t

for all ¢ sufficiently large. Note that by Condition 2(b), for every ¢ > 0 there is r
sufficiently large that |A, (0)] < € for all o € 3.
Rewriting (55) gives:

> e (L) [ R

r=t+1

> / M@ u(o)di(o) +2 (56)
> / " A, (0) My (0) wrsn (0) dIT (o)

oex

21f \F (0) — oo it is possible that a boundedly large increase in V' could be achieved by a change
in promise values away from @, that becomes vanishingly small as ¢ — oo. This would not satisfy the
requirement for the improving promise sequence to be bounded away from the previous sequence at the
limit as t — oo.
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Using the definition of 7, the last term here simplifies to:

Z [H O‘T] /ez N1 (0) wpr (0) Ay (0) dIT (o)

Since oy < & < 1 and A (o) and w, (o) are both bounded uniformly in ¢, this expression
converges to 0 as A, (o) does so across o. Thus it is possible to find a sufficiently large
T such that:

for all t > T'. Using this in inequality (56) implies that for sufficiently large ¢ we have:

S e (Z-5) 2 [ R@u i

r=t+1 T

€

> /ez 5\,]5“ (o) w; (o) dI (o) + 5

Now consider the sum: .
Z gr=(t+1) ( B B) I
r=t+1 A1 77t

Since «a, € (0,1) and 7, > 0 for all r, each element of this sum is positive. In addition,

we have:

e s r
r—(t+1) — o
Z 8 +1 (arl 5)

r=t+1 U
— io: gro(t+D) (77’"1 _ 5&)

r—tt1 Tt Tt
- Sy ek

r=t [ — M

Mt

Thus the sum can be interpreted as a probability distribution weighting time periods,

and the expression:

> e (L) [ R

r=t+1 "It

s N (o) w, (0) dII (o) across periods r > t. Inequal-

ity (56) states that this weighted average always exceeds the value of the same object in

is a weighted average of values for fa
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t itself, by at least an amount § > 0. This is possible only if the object:

/ez /N\i€ (o) wy (o) dII (o)

is growing without bound in ¢. But this is inconsistent with boundedness of w; (¢) and
/N\fgC (o). The former of these is a necessary requirement for the improving promise sequence
@y to be well defined in the chosen vector space, and the latter was established above.
Hence we have a contradiction.

The proof under ratio comparability proceeds near-identically, allowing for the
fact that Gateaux derivatives can now only be established as bounded ratio changes in

promises: {w; (0)},5, = {w; (o) W (o)}, with {10, (o)}, satisfying a uniform bound.
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B Properties of the value function

The implication of Proposition 5 is that undominated allocations under the ordering
>TC’

can be identified by reference to preferences across promise sequences, =3 . These
preferences are defined on the space of promise sequences for which Problem 1 has a
solution. They can be represented by the value function associated with Problem 1.
This representation provides an important step in operationalising our approach. This
Appendix analyses the properties of its two components: the feasible set of promises, and

the value function.

B.1 Feasible promise sequences

For some choices of &g the constraint set for Problem 1 may be empty — there simply
does not exist an allocation that can make good on these promises. Clearly these are not

feasible selections. The set of feasible promise sequences from s onwards is denoted by
Q (1'8,1)1

Q(z5-1) :={@s € W: constraint set to Problem 1 nonempty, given z,_; € X'}

To analyse differential changes to promises, it is useful to restrict attention to the interior
of Q (x,_1). This is denoted by Q (z,_1).

Convexity of Q2 (z5,_1) Animportant regularity property to be able to place on Q (z,_1)

is convexity. The next Proposition establishes the conditions under which this will hold.

Proposition 11. Suppose Assumptions 4 and 5 hold. For any xs € X, the space Q (xs_1)

1S convez.

The proof of this is omitted to avoid repetition: the result follows directly from
arguments contained in the more general proof of Proposition 12 below. Note that the

concavity of r will not be needed for this result.

B.2 Value of the inner problem

The maximised value of the inner problem is denoted by V (s; 25-1), for all s € Q (x5_1)
and all z,; € X. For all ws € W not in Q(zs_1), we normalise V (0g;z5_1) to -
oo for convenience. Note that V can be viewed as a cardinalisation of the preference
ordering =%  given x,_ ;. Thus time-consistently undominated promise choices can be

investigated by reference to the effect of promises on the value of V' at every horizon.
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Concavity of V' As in conventional optimisation theory, a particularly useful prop-
erty for V to exhibit is concavity, as this allows the application of global methods for
constrained optimisation. The next Proposition establishes the conditions under which

concavity will hold.

Proposition 12. Suppose Assumptions 4 and 5 hold. For all x5y € X, V (-;xs_1) is

concave in ws € Q (xs_1).

Proof. To ease notation we suppress the dependence of functions on o. Consider two

promise sequences &y, @2 € Q (xs_1). To establish concavity we must show:
Vol + (1 —a)@lixe 1) > aV (@hxe 1)+ (1 —a) V(@25 ) (57)

for all @ € (0,1). Let ' := (X.,a) and §” := (XZ,al) solve Problem 1 for &, and @/
respectively. It follows from the concavity of r (Assumption 5) that (57) must be satisfied
provided the convex combination ay’ + (1 — «) §” is feasible when the promise sequence

— !

is al + (1 — a)@’. In this case the feasible selection oy’ + (1 — ) ¥” will deliver a

value at least as great as the right-hand side of (57), which is then a lower bound on
V (a@l 4+ (1 — a)@;25-1). The quasiconcavity of g implies that if (4) is satisfied in all
time periods by both ¥ and §” then it must also be satisfied by ay’ + (1 — «) §”. These
constraints are unaffected by variations in the promise values. Thus it remains only to
show that constraints (8) and (9) are also satisfied by the convex combination. Consider
(8). For all t > s,we need:

h(ad,+ (1 —a)a) + B [awl + (1 —a)ufly] = K (ad)+ (1 —a)a))
Since the constraint is satisfied by both ¥ and y”, we have:
ah(ay) + (1 —a) h(af) + 8 [owpy + (1 —a)wiyy] > ah®(a;) + (1 —a)h’ (af)
But by concavity of h:
h(aa, + (1 —a)a)) > ah(a;) + (1 — o) h(af)
and by convexity of h°:
h (aa; + (1 - a)ay) < ah’(a) + (1 —a)h’(a))

Collecting together, this establishes the desired inequality. An identical argument con-
firms that (9) is likewise satisfied for all ¢ > s. Thus ay’+ (1 — «) §” is feasible when the

promise sequence is aw’ + (1 — a) wf/, completing the proof. O

Placing this additional structure on V' does not come without a cost. Assumption 5
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requires concavity in the A function and convexity in the A" function — not just quasicon-
cavity /convexity. In many problems of interest these will not be easy to guarantee. As
ever, when the required assumptions are not satisfied the analysis can proceed, but with
caveats. The most direct analogy in this case is with the analysis of consumer demand
when the utility function is not known to be quasi-concave.

Concave, real-valued functions of a real interval are well known to have appealing

continuity properties. The following corollary is a standard result:

Corollary 3. Suppose the assumptions for Proposition 12 are true. Fiz x,_1 € X, and
let @, and @) be arbitrary selections from Q(xzs—1). Then V (a@l+ (1 — a) @l xs-1) is
continuous in « € [0,1], has left derivatives with respect to a for all o € (0,1], and has
right derivatives with respect to a for all a € [0,1) These derivatives coincide for almost
all o € (0,1).

This provides a solid basis for taking directional derivatives of V' with respect to the

promise sequence.

Derivatives of V' The analysis that follows will characterise time-consistently undom-
inated policy by reference to the slope of the V' function as promises are varied. For
Ts—1 € X and &g € Q(z5_1), the directional (Gateaux) derivative of V' is denoted by
Sy (@s, Ts_1; Ws), defined for all wy € W by:43

Sy (Bor s 15W) = lim [V (@ + awi )~V (@sal,)]
wherever this limit exists. Where V is not differentiable in the relevant dimension,
Oy (s, T5_1; Ws) will denote the above limit as o — 0 from above, and &y, (g, Z5_1; Ws)
as a — 0 from below.

Where V' is differentiable, the usual envelope results for value functions will apply, so
that the derivatives of V' will be defined in terms of Lagrange multipliers on the promise-
keeping and promise-making constraints.

In general we denote the present-value multiplier on promise-keeping constraint (9)
for history o in period t by AF (o), and the corresponding promise-making constraint (8)
by A" (o). Consistent with earlier notation, A¥ and A\7* are the collection of within-period
multipliers across o € ¥, and A\¥ and A\™ are infinite sequences of these from s on. The
space that A\¥ and A™ inhabit is denoted W*.

Confirming the existence of Lagrange multipliers in convex optimisation problems
generally requires the existence of a point that is strictly interior to the constraint set.*

Formally, we will make use of the following;:

43The individual component of W for period ¢ and state o is denoted w; (¢) in what follows, consistent
with the notation for promises.
44Gee, for instance, Luenberger (1969),§8.3, Theorem 1.
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Definition. For any z;_; € X and @s € 2 (z5_1), we say that the corresponding con-
straint set for Problem 1 contains an interior point if there is an allocation (X, a.) in
this constraint set that satisfies the following two inequalities for II-almost all o € ¥ and
all t > s:

Ei1[h(d (0"),0) + Bwiir ()] 0] — wi (o)
h(a;(0),0) + Bwer (0) = (a; (o) ,0) > ¢

v
™

for some € > 0, independent of o and ¢.

The existence of an inner point is not a trivial requirement. It is immediate, for

45 In

instance, that it cannot be satisfied when &g lies at the boundary of € (z,_;).
addition, the condition rules out the simple incorporation of equality constraints as two-
sided inequalities, since in this case interiority is impossible. Extensions to the main
arguments are possible that allow for linear forward-looking constraints, but we neglect

these to avoid over-complicating the analysis.*®

Proposition 13. Suppose Assumptions 1, 4 and 5 hold. Fiz x,_1 € X, and let &g €
Q(xs_1) be such that the constraint set for Problem 1 contains an interior point. Then
wherever the directional derivative dy (Ds, Ts_1;Ws) ezists and is finite-valued, there is
a pair of Lagrange multiplier sequences 5\15‘ and 5\;“ in W* such that 6y (0s, Ts_1; Ws) 18

gien by:

b @) = 357 [ BN (0) 42 0] e (0) = X (0) o) o)
= (58)

with o_ the predecessor history to o.

Proof. Existence of the saddle point multipliers follows from direct application of The-
orem 1, §8.3 in Luenberger (1969), given assumptions 4 and 5. The promise-keeping

constraint can be rewritten for all ¢ and o as:
Ei 1 [h(ac(0'),0) o] = ~(o)

where v (0) := wy (0) — BE; (w1 (07)| o], so that the vector movement in promises Wi

causes a per-unit change in v, () of wy (¢) — BE; [wyy1 (0')| o]. Hence, applying Theorem

451f it were, then a sufficiently small change in promises in any direction would be consistent with the
existence of a feasible allocation. Hence we could not be at the boundary.

46Linear forward-looking equality constraints will most commonly arise in linear-quadratic problems,
in which case conventional techniques from linear analysis can provide an equivalent characterisation.
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1, §8.5 of Luenberger (1969), where the derivative exists it is given by:

v Geniw) = 38 [ ot w0 )

t=s

+ [ @) BB (o] - wi @) (o)}

_ iﬁ{ [ 9 0 s (0) - X (@) )] dt o)
w0 [ [ M@ un @)l ano)

- iﬁ{ [ (53 @) e )= X (@) o)) at o)
+8 [ Mo uen (@) n(o)}

where the last line applies Assumption 1, and o_ is the predecessor history to . This
delivers the stated expression under differentiability. (The right and left derivatives with-
out differentiability, discussed in the text, follow from identical logic, combined with the

concavity of V.) O

All of the major characterisation results that follow will assume differentiability in V/,
applying condition (58), but a generalisation to points of non-differentiability would be
technically straightforward. Where the derivative dy (@s, zs_1; Ws) does not exist, there
is a set of Lagrange multipliers AX x A™ C W* x W* such that 4 (0, 5_1; Ws) is the
minimum in A¥ x A™ of the object on the right-hand side of (58), and 4y, (@s, Ts_1; W)

is its maximum.
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C Problems with incentive compatibility constraints

In this section we sketch the arguments needed to extend the main characterisation
results, Propositions 7 to 9, to problems with incentive compatibility restrictions of the
form (6). This extension is used in the example of Section 9.3 in the main text, applying
the model of Atkeson and Lucas (1992). In all cases the extension is quite mechanical,
but expanded dimensionality in the constraint set makes the notation more burdensome.
This is why we relegate the treatment to an appendix.

Constraint (6) states:

or| > E,

E, Z Bh (Clt+r (Ut+7) 70t+7)
=0

Z ﬁq—h (at—l-T (&t—‘rT) ) O-t+7')
7=0

at] (59)

We assume that oy is an infinite history of draws of some stochastic variable § € © C R.
These draws are taken to be iid through time, so o, is not informative about the expected
sequence of draws from ¢ + 1 on. Since incentive compatibility relates to the period-by-
period reporting decision, it is helpful to represent oy as (0y_1, 6;), where o, is an infinite
past history of 6 draws, and 6; is the current realisation. The iid assumption means that
it does not matter in ¢ whether o;_; was a true history or simply a reported one. We
denote by 7 () the time-invariant density function of 6.

Given this, constraint (6) can be decomposed into promise-making and promise-

keeping restrictions as follows, for all (o_,0) € X:

h(a;(0-,0),0)+ Pwii1(0-,0) > h (at <U_, é) ,9) + Bwitt (0_, é) (60)
E; 1 [h(at(0-,0),0) + Bwiir (0-,0)|0-] = wi(o-)

where (60) must hold for all § € ©.*7 Note that the promise-keeping constraint (61)
must now be stated with equality: providing utility in excess of the required value may
violate incentive compatibility for those with alternative histories. These constraints and
the feasibility restrictions in (4) define an equivalent to the inner problem, Problem 1.
The value function associated with this problem can be denoted V (s, z5-1) as before.
The multiplier on constraint (60) is denoted A} (a_,é’, é), and on (61) it is A\f (o),
normalised by the relative measure of the ¢ and 6 draws in both cases. Proceeding as

before, it is easy to show that if V' is differentiable in the promise sequence then its

47In general only a small subset of these constraints will be binding at a chosen allocation.
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directional derivative along the dimension wg is given by:

Ov (Ds, Ts_1;Ws) = Y o B7° fUEE {ﬁ {/@ A <O'_,9,9~) dé—}—)\f (o)

_/9/\;” (a_,é, 6’) ﬂdé Wiy1 (0)

7 (0)
— M (o) wy (0)} dll (o)

where 0 := (0_,0). There are two main extensions here relative to the case in the main

text. First, a marginal increase in the promise value w;;1 (0_,6) in principle relaxes an

entire set of promise-making constraints that are of relevance to agents whose true draw

is (o_, ) — hence the first integral across alternative 6 reports. Second, an increase in this

promise value tightens the set of promise-making constraints for agents with the common

past (reported) history o_, across all current 6 draws. The second of these ensures that

the term in square brackets in the derivative expression need not be positive, which

necessitates some adjustments to the analysis. Up to this qualification, characterisation

results will proceed as before.

The equivalent statement to Proposition 7 now is:

Proposition 14. Suppose that the policy (XL, a.) is time-consistently undominated, given

some initial ., € X, and assume that V is differentiable at the induced promise sequence

w/

or !

s*

1. There is no period T such that both ’fe A (a_, 0 9) do + (o) f@ AV <a 0 9) ﬂdé‘

When h is difference-comparable,®® for I-almost all o € 3, either:

and ‘)\f o ‘ are bounded above zero for allt > 7.

For all p € (0,1) and all positive scalars Ky and K, it is possible to find a T > s
and T > 1 such that:

r—1 )\k (O') 1 r—T
o T | )
t—r 5[]‘@Am (0_,0 9) d+ M (o) — [ A <a_,é,9> %dé}

forallr >T.

Proof. The proof mimics the difference comparable case above, with minor adjustments.

48Incentive compatibility constraints are commonly based on difference-comparable dynamic utility
functions, so we omit the case of ratio comparability.
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Suppose that there is geometric convergence in the product:

Tl—[_l /\k(a)
= ﬁ{f@)\m<o 0.0)d0+ X (o) = [ A (o 99)%@’]

to zero, i.e. for any 7 > s there exists a p € (0,1) and K > 0 such that for all 7" > 7:

M (9)

A | S s ‘o , “0) g3
= B{f@A <0_,9 9>d9+)\ o) — o N <0_,9 9>md9}

Let 7 be such that both | [y A" (o,6,0) df + X (o) = fu A (0-.0.0) T ) 45 and

‘)\f o | are bounded above zero for all ¢t > 7 — i.e., part 1 of the Proposmon is not

true. Then choose w, (o) > 0 arbitrarily, and for all ¢ > 7 set w41 (o) recursively to

7 (8)

3 /@A;” (a_,e,é) d§+/\f(a_)—/®)\m (0 g e) % wiir (0) > (147) [ME ()

(62)

satisfy the condition:

for some v > 0 such that p (1 +7) < 1, together the bounds: |w;1; (0)] € [w, w], with w

and w uniform in £. The feasibility of the upper bound w here follows from the geometric
convergence in the product ratio to zero, and the possibility of satisfying a lower bound

is trivial. Given these values for the sequence {w; ()}, set &; to satisfy:

er =7 |\t (0)we (0)]

The bounds on A (o) and w; (o) imply &; is bounded above zero. Using this in (62), we

have:

3 /@)\;” <a_,0,é>d§+Af(a_)—/@A;n (a_,é,e> Zﬁdé win (0) > (147) | M (o

= ‘)\f(a)wt

wy (a)|

) wy (63)

o)| + 6

4)

> A (o)w, (o) + & (65)

If true for a positive-measure subset of o € ¥, this would imply a strict improvement for
all t > 7 — contradicting that the policy is time-consistently undominated. A symmetric
argument can be applied when the product ratio is exploding (see proof of Proposition 7

above) completing the proof. []
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An equivalent to Proposition 8 goes through for this case with only cosmetic adjust-

ments to the proofs: a time-consistently undominated policy requires that the condition:

Afﬂu .
Jo N (0-,0,0) 0+ X (o) = [ N (0-,0,0) % ) 4g

is almost never violated at the limit as ¢t — oo, where oy € (0, 1] for all ¢.

The equivalent of Proposition 9 is:

Proposition 15. Consider a policy (XL, al) that solves Problem 1 for the promise se-
quence that it induces, &,. The continuation of this policy (X}, a,) will belong to D (xtq)
for all t > s provided the following are true:

1. The value function V (@s; xs_1) is concave in Ws.

2. (a) There ezist positive scalars K and K such that for allT > s, 7 > 7 and 0 € X:

K<ﬁ Ak” . <K
- 5[[6)\’”(0 0.0)dd+ N (o fe)\m<0_,0~,0>iz))d0~}

(b) There is a sequence of scalars {oy},,, with oy € [, @] for all t and 0 < o <

a < 1, such that the multipliers converge across o € ¥ as follows:

)‘fﬂ (o)
o {f@ N7 (0,0,6) db + X (o) = fo X (0-,0,0) Odé]

lim
t—o00

where the rate of convergence is at least linear.

The proof works identically to the proof of Proposition 9, substituting the object:

),
/@At (0_,6’,0> dQ—/@)\t (0_,0,9> %

for A" (¢). Concavity of the value function for these problems will usually follow from the

linearity of the forward-looking constraints in the within-period utility function, together
with increasing marginal cost of providing utility.

Condition (66) implies that a policy satisfying the sufficiency conditions can be in-
terpreted as a time-consistently optimal choice in a restricted-dimensional problem that

allows period-by-period choice across promises. In particular, the policy must satisfy the
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condition:
0= S0 e ] [N (o 0.0) a8 4 (0 (65)
_/eAgn <a,,é,e> %dé Si1 (0)
— A7 (0) 6 (o) } dI1 (o)

for all s > 0, where {6, (0)},5, is a bounded sequence of scalars for all o € X, with
lim, o inf;>, [0 (0)] > 0 for II-almost all o. This corresponds to a within-period multi-

plier restriction:

3 /@A;ﬂ (0,,9,5) d§+)\f(a)—/®/\7t" (U,,éﬁ) Zgz))dé :Af(@% (69)

A symmetric policy is defined as one that allows policymakers in all periods the same

freedom to vary promises at the margin. This implies the simpler restriction:

(9)

3 /@A;ﬂ (a,,Q,é) df + \F (a)—/@A;” (U,,éﬁ) T di| =X\ (0)  (70)

This is the condition used in the Atkeson-Lucas example in the main text (Section 9.3).
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D Applications: further details of calculations

D.1 Capital taxation
D.1.1 Inner problem

The implementability condition (28) can be decomposed using promise values into promise-

making and promise-keeping constraints, respectively:

Uk 4 (cf + kt) < UCkVtC;If + Bwis (71)

we < UchthJFBWtH (72)

The inner problem in period s is to maximise Wy subject to (26), (71) and (72) holding
for all t > s, given ks and @s. First-order conditions for this problem with respect to

c?, c¥ and k; in turn are:

ucw’t — Nt = 0 (73)
[k — T — N Ugk ok ok + AF [tk s + Ugrer scr] = 0 (74)
=0 + Bt [1+ frper — 6] = M'ugry = 0 (75)

where 7, is the multiplier on the resource constraint (26).

D.1.2 Ramsey policy

Ramsey policy for period 0 is characterised by the first-order multiplier conditions:

A= (76)
)‘f - Af—1+)‘?11 (77)

for t > 0. Using these in (74) and (75) delivers a system of dynamic equations studied
by Straub and Werning (2015). As these authors show, for ¢ > 1 the result is for the
capital stock to converge to a ‘corner’ solution. When p is sufficiently small, this involves
zero long-run consumption for workers, with just sufficient capital to ensure government

expenditure is sustained.

D.1.3 Time-consistently undominated policy

Given ratio comparability, a symmetric time-consistently undominated policy implies the
condition:
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for all t. Combining this with conditions (71) and (72), together with complementary
slackness, reduces it to:
Meek = A7k, (79)

This allows A\* and A\™ to be eliminated from (74) and (75), which collapse to the single

condition:
ke {Bnes1 [1+ frogr — 0] — e} = cf {ne — puge , } (80)

This is equation (29) in the main text.

D.2 Limited commitment
D.2.1 Inner problem

The forward-looking constraints can be decomposed into the following two promise-

making restrictions:

u(ce (o)) + Bwyr (o) = V(o) (81)
I
wlen(o0) + s (o) = 1Y) )
where (82) is for o > 0, and the following two promise-keeping restrictions:
Ei1 [u(ci () + Bwisa ()] 0] = w (o) (83)
u (¢t (00)) + Bwitr (00) = wy (00) (84)

The time-consistent inner problem in period s maximises W subject to (32), and (81)
to (84), given the sequence of state-contingent promises @s. Provided the utility function
is concave, first-order conditions are necessary and sufficient for this. Normalising the

multipliers for population sizes, we require, for all ¢ and all o:*°
W (e (0) L+ A" (o) + Aj (02)) —m =0 (85)

where 7, is again the resource multiplier. This is a standard optimality condition for a
cross-sectional allocation problem, with (1 + AT (o) + AF (J_)) the effective Pareto weight
on an agent of type o. The only departure from a first-best allocation is that Pareto

weights may be changing over time for a given individual.

When o = 0 the predecessor c_ may take on many values, and the condition could be rewritten to
allow for this by aggregating across corresponding values of A\¥ (¢_). However in practice this is precisely
the case in which the promise-making constraint binds, for both the Ramsey and TCUP solutions.
This means the combined Pareto weight (14 A (o) + A (0_)) always takes the same value for o = 0,
irrespective of o_. See below.
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D.2.2 Ramsey policy
Ramsey policy is characterised by the multiplier recursions:

MN(o) =0 (86)
(o) = Ay (o) + A (o) (87)

for all o0 € X.

D.2.3 Time-consistently undominated policy

Under utilitarianism utility can be assumed to be difference-comparable, so that sym-
metric time-consistently undominated policy replaces the Ramsey multiplier condition
with:

M (o) = B[N () + X7 (0-)] (88)

for all o € X.
Again, the solution has the property that promise-making constraints only bind for
agents with o = 0. This, together with the discounting and timing structure of (88),

allows the Pareto weight to be rewritten as:

L+ X" (0) + A (o) =1+ B7A"(0) (89)

D.3 Asymmetric information
D.3.1 Inner problem

Constraint (38) can be decomposed into ‘promise making’ and ‘promise keeping’ compo-

nents. The promise making constraint is:
0y (ct (0,, GZ)) + Bwii (a,, 91) > flu (ct (0,, Qh)) + Bwis (0,, Qh) (90)
for all o_ € ¥.°° The promise keeping constraint is:
Ei1[0u (e (0-,0)) + Bwir (0-,0)|0-] = wi (0-) (91)

where expectations are taken across period-t 6 draws.
The inner problem is to maximise (36) subject to (37), (90) and (91). The multiplier
on (90) is denoted A (o_,6"), consistent with the shock history of agents for whom it

binds. First-order conditions for this problem with respect to ¢; (o—,6") and ¢ (o, ")

®0The notation (o_,#) denotes the history o_ followed by 6. Replacing (38) with this constraint
exploits the one-shot deviation principle.
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in turn are:

Qh
es e (o 8)) 0 (L4 N7 (00) + X (@)} = = 0 (98)

Uey (¢t (0-,0")) 0" {1 + A7 (02) = AP (0, 6") w} - = 0 (92)

This can again be interpreted as the solution to a cross-sectional allocation problem in
which Pareto weights for the different types are given by the objects in curly brackets.

Optimal choice of assets through time implies a standard Euler condition:

e = BRﬁtH (94)

Useful insight into the character of the solution is obtained by combining (92) and (93)
to yield:®!

nE_1 { ] =14+ (0)) (95)

Uey (¢ (0-,0))

D.3.2 Ramsey policy

A Ramsey-optimal choice implies the following conditions for the promise multipliers:

A (o2,0") = =X\ (oo 6)T+>\ 1 (00) (96)
A (02,0 = Ay (02,0 + A (0o) (97)

for all o_ € X, together with the normalisation:
A (o) =M (0) =0 (98)
for all o € 3. Combining (96) and (97) gives:
E; Ay (0-,0)] = Xf (o) (99)

That is, the promise-keeping multiplier follows a martingale process. Using this in (95),
together with (94), gives the inverse Euler condition (39) in the main text.
D.3.3 Time-consistently undominated policy

In this problem promises correspond to utility values, and since the policymaker is util-

itarian these must be difference comparable across individuals with different ¢ draws.

! This uses the normalisation # = 1, and the independence of A\F (¢_) with respect to the period-t
shock.
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The extension of the symmetric multiplier condition (23) to this case implies:*

A (o2, 0") = B =N (0,01)%4—)\? ()] =0 (100)

N (oo ) — B[N (r8) 4 N (0)] = 0 (101)

Replacing the Ramsey conditions (96) and (97) with these delivers the symmetric time-
consistently undominated solution. A useful contrast is obtained by combining (100) and
(101) to give:

Er [N (0-.0)] = BN (02) (102)
Thus promise-keeping multipliers decay at rate [ in expectation along a sample path

for past type draws, but again this is true within a given period t. The cross-sectional

equivalent of the inverse Euler equation, condition (40), can then be obtained, using (95).

52See Appendix C
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