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Abstract 

We review the empirical literature concerning the magnitude of the direct rebound 

effect in households, focusing on econometric studies, and analyze the theoretical and 

methodological aspects for the estimation of the direct rebound effect. We then 

estimate the magnitude of the direct rebound effect of households’ electricity 

consumption in Spain. Using panel data from 2007 to 2016 for all the Spanish provinces, 

we estimate the short- and long-run direct rebound effects. In order to deal with 

cointegration of variables and to solve potential spurious relationships between them, 

we use a two-step Error Correction Model. We also estimate the dynamic model through 

a GMM system. The results indicate a direct rebound effect between 26% and 35% in 

the short-run and around 36% in the long-run. These findings suggest that, in Spain, 

energy efficiency policies with the aim of saving electricity consumption are significantly 

less effective without complementary measures to tackle the direct rebound effect. 

Moreover, one can expect a greater electricity savings response from households to 

price changes than to income or weather changes. We find a significant influence of 

other energy sources that appear to be complementary to electricity consumption 

according to our estimation. 

 

Keywords: Energy efficiency; direct rebound effect; households’ electricity 

consumption; dynamic panel data model. 
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1. Introduction 

Most governments are promoting improvements in energy efficiency to reduce energy 

consumption and associated pollutant emissions (Gillingham et al., 2006; Grubb et al., 

1991; Hoeller and Coppel, 1992; Park et al., 2009; Sorrell, 2007). These improvements 

aim at providing the same amount of energy service to the consumer using less energy. 

Energy services can be understood as useful work or useful outputs obtained by energy 

conversion devices (Sorrell, 2007) or as Fell (2017, p. 137) stated: “Energy services are 

those functions performed using energy which are means to obtain or facilitate desired 

end services or states.” An example of an energy service would be “transportation.” By 

driving improved fuel-efficient vehicles less fuel is used. However, by using less energy, 

the energy service becomes cheaper for the user than before the energy efficiency 

improvement. This decrease in the cost of the energy service causes behavioral 

responses from consumers that can be translated into different outcomes: driving 

further, new trips, more vehicle owners, less vehicle sharing, etc., causing what is known 

in the literature as the (direct) “rebound effect.” Hence, the direct rebound effect can 

be defined as the consumer behavioral responses, following a reduction in the cost of 

energy services, due to an improvement of energy efficiency. This partially or fully 

reduces the initially expected energy savings, or in some cases, could even increase the 

energy consumption. 

 

The identification of the sources of the rebound helps to assess its magnitude (Greening 

et al., 2000). One of the most common classifications in the economic literature 

regarding the rebound effect is the following (Freire-González & Font Vivanco, 2017; 

Greening et al., 2000; Sorrell, 2007):  

(i) Direct rebound effect, which was first defined by Daniel Khazzoom as the 

increase in the demand of an energy service caused by improvements in the 

efficiency of that particular energy service (Khazzoom, 1980). 

 

(ii) Indirect rebound effect, which can originate from three sources: (1) 

embodied energy, that is, the energy needed to implement the measure that 

leads to the technical change; (2) secondary effect, that is, when the demand 

for other goods and services that also require energy for their production and 
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distribution are affected by the reduction in the effective cost of the energy 

service considered (Sorrell, 2007); (3) cross effect, which is a new additional 

source of rebound that has been recently labeled by Freire-Gonzalez and 

Font Vivanco (2017) as “cross rebound effect,” consisting in the variation in 

the use of other natural resources following an energy efficiency 

improvement. This source of rebound comes from extending the concept of 

the classical rebound effect to broader perspectives considering multiple 

environmental pressures (Font Vivanco et al., 2016), and can be classified as 

a subtype of the indirect rebound effect. 

 

(iii) Economy-wide rebound effect are the adjustments of prices and quantities 

of goods and services on the whole economy after an energy efficiency 

improvement (Sorrell, 2007). 

 

There is open discussion regarding the magnitude of the rebound effect, whether it is 

lower than 100%, which implies that there are energy savings after an improvement in 

efficiency, or greater than 100%, which means that there is a greater consumption of 

energy after an efficiency improvement, causing what is known as “backfire.” The core 

of this discussion lies in the magnitude of the economy-wide rebound effect.1 

Nonetheless, the direct and the indirect rebound effects are the most important sources 

of rebound at the microeconomic level.  

 

The purpose of this article is to obtain empirical evidence of the direct rebound effect 

for all the energy services that require electricity for their provision in Spanish 

households. Using recent data, this paper delivers an estimated magnitude of the direct 

rebound effect in the consumption of electricity of Spanish households providing short- 

and long-run estimates. The results of this research will contribute to the empirical 

literature concerning the direct rebound effect in a developed country of a collection of 

energy services provided by electricity in households. We will provide new evidence for 

                                                           
1 The magnitude of the economy-wide rebound effect can be estimated by the use of Computable General Equilibrium 

(CGE) models or macro-econometric models (see Sorrel, 2007). 
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the case of Spain, as there is a lack of empirical evidence of the direct rebound in this 

area (except for the region of Catalonia, Freire-González, 2010). As different economic 

variables tend to change over time, it is expected that the magnitude of the rebound 

effect varies through the years (Sorrell, 2007, 2018). Henceforth, this research will not 

only contribute to the direct rebound effect literature, but it will also provide updated 

and useful information to policymakers. Furthermore, a methodological contribution of 

our paper is that we test the impact of the prices of other energy sources, which may be 

substitutes or complementary goods. 

The study of the rebound effect is essential for policymakers whether they want to 

maximize energy and climate policy effectiveness by incorporating additional measures 

to tackle the rebound effect, such as energy taxation or tradable permits (Freire-

González and Puig-Ventosa, 2014; Van den Bergh, 2011) or if social welfare is a priority 

(as efficiency improvements in energy services would reduce its effective cost) rather 

than saving energy (Sorrell, 2018). 

The paper is structured as follows: Section 2 contains a short updated review of the 

empirical literature related to the direct rebound effect; Section 3 explains the 

theoretical and methodological developments for estimating the direct rebound effect 

and the sources of data employed; Section 4 shows the results obtained; and finally, 

Section 5 presents the main conclusions. 

 

2. Literature review of the direct rebound effect in households 

The empirical literature shows different magnitudes concerning the rebound effect, 

which stimulates the debate on whether improvements in energy efficiency will reduce 

energy consumption and save energy or whether they will increase energy use instead 

(Saunders, 1992). This heterogeneity depends on the kind of rebound effect analyzed, 

but can also be due to factors like the different structural components of economies 

(Freire-González, 2017a), or the level of industrialization of the analyzed region.2 The 

                                                           
2 Freire-González (2017a) developed indicators to assess the rebound vulnerability for a specific economic structure 

after an energy efficiency improvement in households. Rebound vulnerability is the propensity of an economy to 

experience direct and indirect rebound effects given its economic structure. 
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rebound effect in developing countries tends to be greater than in developed countries. 

Possible explanations for this are: 

(i) In developing countries, the demand for energy services is far from their 

satiation levels (Sorrell, 2007). 

(ii) They experience a rapid accumulation of energy-using technologies as well 

as more energy-intensive consumption, due to their high rate of growth (Van 

den Bergh, 2011). 

(iii) The energy cost is relatively more expensive given their low wages. Hence, 

energy conservation may induce a larger re-spending effect (Van den Bergh, 

2011). 

 

In order to put our analysis into context, this section reviews the literature on the direct 

rebound effect in households. There are several ways to measure the direct rebound 

effect (Sorrell, 2007, 2009; Sorrell et al., 2009). Nevertheless, our focus is on the direct 

rebound effect estimation through econometric estimates for energy services supplied 

by electricity and natural gas in households. 

 

2.1. Space Cooling 

Space cooling has not been analyzed as much as space heating. Nonetheless, Hausman 

(1979) and Dubin et al. (1986) estimated its direct rebound effect. They found a direct 

rebound effect of less than 30%. This magnitude is greater in the long- than in the short-

run (see Table 2). Given the period analyzed by these studies (1979 and 1981), their 

results may not reflect the current magnitude of the rebound effect for this particular 

energy service. 

 

2.2. Space Heating 

Studies associated with the estimation of the direct rebound effect for space heating in 

households are mostly conducted for developed countries. In the first studies, all 

estimates found a magnitude of the direct rebound effect lower than 100% (Douthitt, 

1986; Dubin and McFadden, 1984; Haas et al., 1998; Hsueh and Gerner, 1993; Klein, 

1988, 1987; Nesbakken, 2001; Schwarz and Taylor, 1995). These studies found a short-



6 

 

run upper bound of the direct rebound effect of around 30% and a long-run direct 

rebound effect between 40% and 60%. More recently, Gram-Hanssen et al. (2012) 

combined survey results with electricity consumption data in 185 households in 

Denmark to estimate the direct rebound effect after the replacement of direct electric 

heating with air-to-air heat pumps. They contributed to the literature by finding no 

energy savings for summer houses, that is, a direct rebound effect of 100%. Regarding 

the permanently occupied dwellings, the direct rebound effect fell into the expected 

magnitude considering the previous studies on space heating, a 20% reduction on the 

achievable energy savings (see Table 1). 

 

2.3. Other energy services in households 

The empirical evidence for other household energy services is even more limited than 

for space cooling. Guertin et al. (2003) measured the long-run estimate regarding water 

heating. They found this rebound to be between 34% and 38%. For appliances and 

lighting, the direct rebound effect was found to be between 32% and 49%. Davis (2007) 

found that for clothes washing the direct rebound was relatively small, less than 5%. 

Table 3 summarizes these two studies. 

 

2.4. Sets of energy services in households 

Under certain assumptions, the estimation of the own-price elasticity of domestic 

electricity demand would reveal the direct rebound effect. In this approach, the 

estimation is based upon an overall improvement in electricity efficiency used by 

households (Sorrell, 2007). Hence, the direct rebound effect refers to all energy services 

run by electricity.  

Table 4 summarizes some empirical evidence of the direct rebound for households’ 

electricity and gas consumption. One of the first studies to analyze the direct rebound 

effect of a collection of energy services was Freire-González (2010) for the case of 

Catalonia (Spain). He used panel data from the period 1991–2003 with a sample size of 

43 Catalan municipalities. He found that the short- and long-run elasticities were 35% 

and 49% respectively. Several subsequent studies have analyzed the direct rebound 
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effect for electricity consumption in households using the same econometric approach 

to estimate the short- and long-run elasticities. The results of these studies for 

residential electricity consumption are in line with the theory suggesting that the direct 

rebound effect is expected to be greater in developing regions (Sorrell, 2007); since the 

direct rebound effects estimated for China, Tunisia, and Pakistan (Alvi et al., 2018; Labidi 

and Abdessalem, 2018; Wang et al., 2014; Zhang et al., 2017) were higher than those 

estimated for Catalonia (Spain) and Beijing (China)3 (Freire-González, 2010; Wang et al., 

2016). Another recent measure of the direct rebound effect for domestic energy 

services was conducted by Belaïd et al. (2018). They found short- and long-run direct 

rebound effects of 60% and 63% respectively, for all energy services supplied by gas in 

France. The size of both effects may seem large for a developed country considering the 

economic literature on the direct rebound effect. However, these results should be 

taken with caution, since they used average data for the whole country, which may not 

capture the heterogeneity among French regions. Table 5 indicates the findings of these 

studies. 

Table 1. Econometric estimates of the direct rebound effect for household heating. 

Author/year Country Short-run 

RE 

Long-run RE Data Estimation 

technique 

Dubin and 

McFadden 

(1984) 

US 25–31% - Cross-section 

1975 Sample size: 

313 

Logit (discrete) and 

instrumental 

variables 

(utilization) 

Douthitt (1986) Canada 10–17% 35–60% Cross-section 

1980-1981 

Sample size: 370 

OLS 

Klein (1987, 

1988) 

US 25–29% - Pooled cross-

section: 1973–

1981 Sample size: 

2,157 

3SLS 

Hsueh and 

Gerner (1993) 

US 35% 

 

- Cross-section 

1980-1981 

Sample Size: 253 

Electricity 

OLS 

                                                           
3 Beijing is not only the capital of China, but also the second richest city of the country in per capita disposable income 

(Wang et al., 2016). 
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Schwarz and 

Taylor (1995) 

US - 1.4–3.4% Cross-section 

1984-1985 

Sample Size: 

1,188 

OLS 

Haas et al. 

(1998) 

Austria - 15–48% Cross-section 

Sample size: 400 

OLS 

Nesbakken 

(2001) 

Norway 15–55% 

(average 

21%) 

- Cross-section 

1990 Sample size: 

551 

Logit (discrete) and 

instrumental 

variables 

(utilization) 

Guertin et al. 

(2003) 

Canada - 29–47% Cross-section 

1993 Sample size: 

(188 gas; 252 

electric) 

OLS 

Gram-Hanssen 

et al. (2012) 

Denmark - Space heating: 20% 

Permanently occupied 

dwellings. 

100% Summerhouses 

Panel: 1990–

2009. Sample 

size: 180 

OLS 

Source: own elaboration based on Sorrell et al. (2009). 

 

 

Table 2. Econometric estimates of direct rebound effect for space cooling. 

Author/year Country Short-

run RE 

Long-

run RE 

Data Estimation technique 

Hausman 

(1979) 

US 4% 26.5% Cross-section 1978 

Sample size: 46 

Nested logit (discrete) and 

instrumental variables 

(utilization) 

Dubin et al. 

(1986) 

Florida 

(US) 

1–26%  Cross-section 1981 

Sample size: 241–396 

Nested logit (discrete) and 

instrumental variables 

(utilization) 

Source: own elaboration based on Sorrell et al. (2009). 

 

Table 3. Econometric estimates of direct rebound effect for other household energy 

services. 

Author/year Country Short-run RE Long-run RE Data Estimation 

technique 

Guertin et al. 

(2003) 

Canada - 34–38% (water) 

32–49% 

(appliances/lighting)  

Cross-section 1993  

Sample size: 440 

OLS 
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Davis (2008) US < 5.6 clothes 

washing 

 Panel 142 days of 

1997 Sample size: 

98 

Fixed effects 

Source: own elaboration based on Sorrell et al. (2009). 

 

Table 4. Econometric estimates of direct rebound of all energy services in households 

that use electricity or gas. 

Author/year Country Short-

run RE 

Long-run RE Data Estimation 

technique 

Freire-Gonzalez 

(2010) 

Catalonia 

(Spain) 

35%  49%  Panel: 1991–2002 

Sample size: 43 

Fixed effects and 

Error Correction 

Model 

Wang et al. 

(2014) 

China 72%  74%  Panel: 1996–2010 

Sample size: 30  

Fixed effects and 

Error Correction 

Model 

Wang et al. 

(2016) 

Beijing 

(China) 

16% 40% Time series: 1990–

2013 

Fixed effects and 

Error Correction 

Model 

Zhang et al. 

(2017) 

China  72% on average. 68% 

low income regime, 

55% high income 

regime 

Panel: 14 years 

(2000–2013) and 29 

provinces of China 

Linear panel model 

and panel 

threshold model 

Alvi et al. (2018) Pakistan 42.9%  69.5%  Panel: 1973–2016  

Sample size: not 

specified 

Fixed effects and 

Error Correction 

Model 

Labidi and 

Abdessalem 

(2018) 

Tunisia  81.7% Panel: 1995, 2000, 

2005 and 2010  

Sample size: 21  

Fixed Effect  

Belaïd et al. 

(2018) 

France 60% 

(gas) 

63% (gas) Time series: 1983–

2014  

OLS and ARDL 

Source: own elaboration. 

 

 

3. Methodology and Data  

This section details the theoretical and methodological developments for the estimation 

of the direct rebound effect using econometric approaches. The theoretical 

developments followed in this section can be found in Berkhout et al. (2000), Sorrell 
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(2007), and Sorrell and Dimitropoulos (2008). This section also shows the proposed 

formal specifications and the estimated models. 

 

3.1. Methodological developments on the estimation of the direct rebound 

There is a consensus in the economic literature regarding the measurement of the direct 

rebound effect through the efficiency elasticity of the demand for useful work (Berkhout 

et al., 2000). This is the primary definition of the direct rebound effect: 

 ����� = ����� − 1 (1) 

Where ����� is the efficiency elasticity of the demand for energy and ����� is the 

efficiency elasticity of the demand for useful work. One definition of useful work or 

useful output is what consumers required in terms of an end-use service (Patterson, 

1996). For example, a useful work measure of transportation service from private car 

ownership can be the calculation of passenger kilometers. This calculation can come 

from the product of the number of cars, the mean driving distance per car per year, and 

the average number of passengers carried per year (Sorrell and Dimitropoulos, 2008). 

The most common outcomes found in the literature when estimating the direct rebound 

effect are the following: 

(i) A zero direct rebound effect, when the efficiency elasticity of the demand for 

useful work equals to zero ������ = 0�. Hence, the efficiency elasticity of the 

demand for energy ������� is equal to minus one. This would imply that the 

final energy saving would achieve its maximum. 

(ii) A positive direct rebound effect with energy savings, when the efficiency 

elasticity of the demand for useful work is positive ������ > 0) and the 

efficiency elasticity of the demand for energy is less than 1 ������ <
1�	(Sorrell and Dimitropoulos, 2008). This would imply that there will be a 

reduction in the achievable energy savings. This is the most common 

outcome in the literature.  

(iii) A positive direct rebound effect causing an increase in energy consumption, 

when the demand for useful work is elastic	������ > 1). Thus, an 
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improvement in energy efficiency will actually increase energy consumption 

(backfire) (Saunders, 1992). 

Under certain assumptions, the direct rebound effect can be measured indirectly, 

without data on energy improvements, through price elasticities. This approach is based 

upon two assumptions in order to be analogous to the estimation of the direct rebound 

effect (Sorrell, 2007; Sorrell and Dimitropoulos, 2007, 2008). First, symmetry: For a 

normal good, it is expected that rational consumers will respond in the same way to a 

decrease in energy prices as they do to an improvement in energy efficiency (and vice-

versa) (Sorrell et al., 2009). Second, exogeneity: energy prices ���� are exogenous, so 

they do not affect energy efficiency (Sorrell, 2007). Under these assumptions, the direct 

rebound effect can be expressed as: 

 ����� = −������ − 1 (2) 

Where the energy cost elasticity for useful work (������) can be used as a proxy for the 

efficiency elasticity of useful work. It is expected that ������ 	≤ 0 if useful work is a 

normal good (Sorrell and Dimitropoulos, 2008). 

It is also possible to arrive at another definition for the direct rebound effect, through 

the estimation of the own-price elasticity of energy demand ��������. 

 ����� = −������ − 1  (3) 

The additional assumption required for this definition (besides symmetry and 

exogeneity) is that energy efficiency does not change with the level of energy use (Sorrell 

and Dimitropoulos, 2008). To deal with endogeneity (energy efficiency affects energy 

costs and energy costs affect energy efficiency), empirical estimates can be addressed 

analyzing cointegration relations between variables (Freire-González, 2010). Since 

periods of rising prices may induce improvements in efficiency, to avoid overestimating 

the size of the effect, empirical estimates must be based upon periods of stability or 

decrease of energy prices (Sorrell, 2007; Sorrell and Dimitropoulos, 2008; Sorrell et al., 

2009). 

Most of the empirical evidence briefly reviewed in Section 2 suggests that the direct 

rebound effect is lower than 100%, implying that there will be energy savings after an 
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improvement in efficiency. However, it is important to point out that these estimates 

only measure the direct rebound effect without considering the indirect rebound effect; 

when both the direct and indirect rebound effect can be linked through a re-spending 

framework (Freire-González, 2011), leading to different rebounds at microeconomic 

level. In this framework, low estimations of the direct rebound effect give rise to the 

possibility that the indirect rebound effect reaches a wider range of values; likewise, 

high estimations of the direct rebound effect entails less potential fluctuation of the 

indirect rebound effect (Freire-González, 2017a). Given this relationship between both 

effects, it is not possible to confirm whether the direct and indirect rebound effect is 

greater or lower than 100% when only the direct rebound effect is measured.4 A 

comprehensive way to jointly estimate the direct and indirect rebound is through the 

Almost Ideal Demand System (AIDS) (Deaton and Muellbauer, 1980). These models, 

however, require a lot of information on consumption, expenditures, prices, and other 

variables from a basket of goods and services that is not always available. Chitnis and 

Sorrell (2015) estimated a direct and indirect rebound effect of 48% for electricity 

efficiency improvements in UK households through an AIDS, and using the same 

methodology, Lin and Liu (2013) found a direct and indirect rebound effect of 165.22% 

(backfire) in Chinese households. 

The existing literature suggests that the magnitude of the direct rebound effect lies 

between 30% and 50% (Freire-González, 2017; Sorrell et al., 2009). As energy efficiency 

data is usually unavailable, most studies rely either on the elasticity of demand for 

energy services with respect to the price of energy or the elasticity of demand for energy 

with respect to the price of energy to estimate the direct rebound effect (Sorrell, 2007; 

Sorrell et al., 2009). Under the assumptions explained above, both approaches are 

accepted in the direct rebound effect literature (Freire-González, 2017b; Sorrell and 

Dimitropoulos, 2007). 

                                                           
4 Freire-González (2017b) found direct and indirect rebound effects greater than 100% of energy efficiency in 

households in Cyprus, Poland, Belgium, Bulgaria, Lithuania, Sweden, Denmark, and Finland by using a combination of 

econometric estimations of energy demand functions, re-spending modeling, and generalized input–output of energy 

modeling. 
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Regarding the term of the effects, Sorrel stated: “Rebound effects may be larger or 

smaller over the long-run as a greater range of behavioral responses become available” 

(Sorrell, 2018; p.14). 

 

 

3.2. Data 

We obtained annual data from 2007 to 2016 for the 52 provinces of Spain for all the 

variables described. We obtained the price of domestic electricity and natural gas from 

the European Commission Database of Energy Statistics.5 These prices do not vary 

between provinces, but they do over time. We gathered the information about heating 

oil prices from the European Commission’s Oil Bulletin.6 We could not find data for 

renewable energy prices, which is mainly biomass.7 In this sense, Vinterbäck and Porsö 

(2011, p. 9) stated that for Spain: “There is no official information or statistics about 

prices of wood pellets and briquettes. There are several independent organizations 

related to the wood sector (e.g. Confemadera, Cismadera, Cesefor) that handle internal 

data about prices, but these statistics are not available for all stakeholders but only for 

organization members and people registered on the webpage.” 

 

We assigned the price of electricity and natural gas considering their price categories. 

The price categories of each Spanish energy carrier (electricity and natural gas) are 

shown in Appendix 1. In the case of electricity consumption, we can find provinces that 

fell into two categories (Band DB and DC) along the 10 years, such as Alava, Burgos, and 

Cantabria. On the other hand, there are provinces whose price category remained the 

same during the 10 years, such as Barcelona and Madrid (Band DC), and Avila and 

Caceres (Band DB). This feature is also present in natural gas consumption. We captured 

this price variability for both energy sources (electricity and natural gas) considering the 

                                                           
5 http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_pc_204&lang=en  

6 https://ec.europa.eu/energy/en/data-analysis/weekly-oil-bulletin 

7 According to IDAE the renewable energy sources used by Spanish households are the following: Biomass (96.6%), 

Solar Thermal (0.03%), and Geothermal (0.002%). 
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average household consumption per province per year to be the dependent variable in 

the estimates. Heating oil is charged at the same price regardless of the amount used. 

 

Given data availability issues, the household disposable income of each Spanish region, 

which was obtained from the National Institute of Statistics (INE),8 is used as a proxy for 

the household disposable income per province. Nevertheless, we transformed all the 

monetary variables to constant 2016 prices by accounting for the inflation in each 

province. 

 

We collected data on the minimum and maximum daily temperature of each province 

from the State Meteorological Agency of Spain (AEMET).9 The base temperature chosen 

to calculate the heating and the cooling degree days are 21°C and 22°C respectively; 

Appendix 2 shows the formula used. Nevertheless, there is no consensus regarding the 

suitable values of the “threshold” or base temperature to define the comfort zone 

(Blázquez et al., 2013). In this sense, the base temperature for heating degree days was 

defined following the values chosen by Freire-González (2010) for his estimation of the 

direct rebound effect for Catalonia; and the cooling degree days base temperature was 

defined following the Spanish Technical System Operator (REE, 1998). Data on electricity 

consumption (the dependent variable in the estimates) and subscribers was obtained 

from the Ministry of Industry, Commerce, and Tourism.10 

 

3.3. Econometric models estimated 

This subsection shows the econometric models estimated to measure the direct 

rebound effect. Following the proposal of Freire-González (2010), the estimation of the 

direct rebound effect was performed by obtaining the price and income elasticities using 

a double-logarithmic functional form for the demand of electricity consumption in 

households. A general household electricity demand model for Spain can be specified as 

follows: 

                                                           
8 Instituto Nacional de Estadistica. (Spanish Statistical Office), www.ine.es/ 

9 Agencia Estatal de Meteorología (AEMET). Sede Cataluña, from aemet.es/es/portada. 

10 Ministerio de Industria, Comercio y Turismo, https://energia.gob.es/balances/Publicaciones/. 
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��	����/ℎℎ��� = �	 +	�������� + � ���!�� + �"��#�� + �$��%&&�� + �'��(&&�� +
�)��	����*�/ℎℎ��*��  (4) 

	
Where	���/ℎℎ��  is the aggregate electricity consumption divided by the number of 

households subscribed in period t, in province i; ����  is the price of electricity in period 

t, in province i; �!��  is the price of other energy sources needed in Spanish households 

in period t, in province i, such as natural gas (G) and heating oil (HO); #�� is the 

households’ disposable income in period t, in province i; %&&�� and (&&��  are the 

cooling and heating degree days in period t, in province i, respectively; and 

���*�/ℎℎ��*�	is the average electricity consumption in period + − 1, in province i; which 

captures the long-run effects. 

 

We expect a negative sign in the coefficient accompanying the price of electricity, that 

is, an increase in electricity prices would reduce the electricity consumption. The 

relationship between electricity consumption and the price of other energy sources 

seems more complex. To identify whether electricity and the other energy sources are 

substitutes or complementary goods, we can focus on the energy services provided from 

each energy carrier. Considering the period 2010-2015, electricity is the major energy 

source in providing lighting and energy for appliances. This energy service amounts for 

approximately 74% of the total electricity consumption in Spanish households (IDAE, 

2010-2015). For space cooling services, electricity is the main energy source with a 99% 

share (IDAE, 2010-2015). Therefore, families do not have much possibilities of 

substituting the energy sources for these energy services. As regards, space heating, 

which is the energy service with the greatest share of energy consumption in Spanish 

households, electricity has a share of 7% (IDAE, 2010-2015); biomass, natural gas, and 

heating oil being the most important energy sources. If we combined the energy services 

of space heating, water heating, and cooking, electricity amounts for 14% of the total 

energy consumption for those energy services (IDAE, 2010-2015) (see Appendix 3 for 

further information). Nevertheless, most families just have one type of installation to 

provide each of these energy services and, therefore, there are not many possibilities 

for substituting the energy sources providing them. Households need not only electricity 
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to satisfy their demand for energy services, but they also require other energy sources, 

such as natural gas and heating oil. Therefore, when we estimate the direct rebound 

effect of a collection of energy services provided by electricity, we could expect a 

negative (complementary) relationship between the other energy sources used in 

households and the residential electricity consumption. That is, an increase in the price 

of the other energy sources would tend to reduce the consumption of electricity. 

 

Households’ disposable income is expected to have a positive relation with electricity 

demand, as we consider that electricity is a normal good. 

 

Degree days measure the duration and intensity of warm or cold temperatures, along 

different periods. They are computed using a base temperature that should adequately 

separate the cold and heat branches of the demand–temperature relationship (Pardo et 

al., 2002). Concerning the weather variables, a wider temperature range is expected to 

have a positive influence on electricity consumption (Romero-Jordán et al., 2014), that 

is, the colder (warmer) the temperatures are from the base temperature, the greater is 

the use of heating (cooling) devices run by electricity. In this sense, HDD and CDD are 

expected to have a positive relationship with electricity demand. Regarding the lagged 

electricity consumption, a positive sign is expected, due to existing inertia in electricity 

consumption (Abel, 1990; Romero-Jordán et al., 2014). Given these relationships and 

the models used in previous studies concerning the direct rebound estimation in 

households, we presume that all relevant variables have been accurately included in the 

model. 

 

3.3.1. Two-Step Error Correction Model 

In the long-run, households’ energy demand can be adjusted completely to changes in 

prices and income within the unit period, which is one year in our model (Sorrell and 

Dimitropoulos, 2007). On the contrary, in the short-run, households’ energy demand 

has fewer adjustment possibilities. Therefore, to estimate both short- and long-run price 

elasticities in household electricity consumption, an Error Correction Model (ECM) 

(Granger, 1981) is used to calculate the direct rebound effect (Alvi et al., 2018; Freire-
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González, 2010). An ECM is an econometric model that deals with the cointegration of 

variables to obtain both short- and long-run estimators, and solve spurious relationships 

between them (Greene, 2003). For residential electricity demand, we can expect that 

households would respond not only to current values of independent variables but also 

to past values. As this effect might persist over time, an ECM with lagged variables is an 

appropriate model to deal with these potential endogeneity issues providing consistent 

estimations (Greene, 2003). In this case, the ECM is performed in two steps. First, a fixed 

effects model is estimated following this specification: 

 

 ������/ℎℎ��� = � + ,� +	�������� + � ���!�� + �"��#�� + �$��%&&�� + �'��(&&�� +
	-��  (5) 

 

Where � represents the common fixed effect or constant; ,� are the individual fixed 

effects. The fixed effects model has been estimated using a Generalized Least Squares 

(GLS) method, correcting potential heteroskedasticity and autocorrelation problems by 

using cross-section weights. This model provides long-run elasticities. Second, the 

predicted residuals from estimating equation (5) have been saved and used as 

exogenous variable in a regression containing differenced endogenous and exogenous 

variables plus the lagged error term �.-��*��, which is a specification of an ECM. The 

ECM model is specified as follows: 

 

∆������/ℎℎ��� =∝ +1�∆������ + 1 ∆���!�� + 1"∆��#�� + 1$∆��%&&�� +
1'∆��(&&��+	1∆)������*�/ℎℎ��*�� 	+ .��-��*� + 2��  (6) 

 

A significant and negative coefficient accompanying the error correction term �.��-��*�� 
would imply that the system corrects its previous period disequilibrium. Expected values 

of the error correction term are between 0 and -1. Table 5 shows that three of the eight 

statistics reject the null hypothesis of no cointegration, suggesting the existence of 

cointegration. The ECM has also been estimated assuming cross-section 

heteroskedasticity, that is, with a GLS specification. In both steps, the ECM has been 

estimated with the common coefficients to all provinces; the fixed effect of each 

province is displayed in Appendix 4. 
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The Hausman test confirms that there are differences between the random and the fixed 

effects estimators (Table 6). Hence, the fixed effects estimator is more suitable than the 

random effects to estimate the two steps ECM. Table 6 output rejects the null 

hypothesis of no correlation between the unique errors and the regressors. Likewise, 

Table 7 shows that the first step equation of the ECM, suggests that cross-section effects 

are significant. Moreover, the cross-section fixed effects test equation is relevant for all 

the variables. 

3.3.2. System Generalized Method of Moments 

As previously stated, we expect a significant influence from past values of the 

explanatory variables on the current values of the dependent variable. To deal with this 

dynamic relationship, we can also estimate the model through a dynamic Generalized 

Methods of Moments (GMM) panel estimator. This estimator is consistent and unbiased 

if we assume that the unobserved heterogeneity �,�� is fixed (Wintoki et al., 2012). 

 

To deal with potential endogeneity issues, the dynamic GMM estimators instrument 

current values of explanatory variables with their lagged values (Wintoki et al., 2012). 

  

According to Roodman (2009b), the dynamic GMM panel estimators, whether using 

difference or system GMM, are designed for situations when the time span (T) analyzed 

is relatively small with respect to the cross-sections (N). Relating the econometric 

method to our data generating process, we can see that the individuals (52) are 

relatively large compared to the time frame (10). 

 

We base our estimation on the system GMM estimator (Arellano and Bond, 1991; 

Arellano and Bover, 1995; Blundell and Bond, 1998; Holtz-Eakin et al., 1988). This 

approach also addresses fixed effects, heteroskedasticity, and autocorrelation 

(Roodman, 2009a). 
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The dynamic model is specified as follows: (Arellano and Bover, 1995; Baltagi, 2008; 

Blundell and Bond, 1998; Roodman, 2009a)11:  

 

 3�� = �3�,�*� + �5´�� + 2�� (7) 

 2�� = ,� + 7�� 

 ��,�� = ��7��� = ��,�7��� = 0 

 

The two orthogonal conditions of the disturbance term are: the fixed effects �,�� and 

the idiosyncratic shocks �7��� (Roodman, 2009b). For these conditions to be valid, the 

instruments must provide an exogenous source of variation on the explanatory 

variables, for example: past values of the explanatory variables that have no direct effect 

on the current dependent variable (electricity consumption per province) and only affect 

it through its effect on current values of the explanatory variables (Wintoki et al., 2012) 

 

To remove the fixed effects �,�� from equation 7, Arellano and Bond’s (1991) estimator 

subtracts the previous observation from the contemporaneous one which is known as 

“difference GMM”: 

 ∆3�� = �∆3�,�*� + ∆5´��� + ∆8��  (8) 

 

Nevertheless, the weakness of this estimator is that it increases data loss (due to the 

first difference transformation) especially in unbalanced panels (Roodman, 2009a). 

There is also a potential endogenous issue; as the 3�,�*� term in ∆3�,�*� = 3�,�*� −

3�,�*  is correlated with 8�,�*� in ∆8�� = 8�� − 8�,�*�. Additionally, predetermined 

variables in 5´ could also add another endogeneity problem; as they might also be 

correlated with 8�,�*� (Roodman, 2009c).  

 

Arellano and Bover (1995) presented an alternative transformation of equation 7, by 

using forward orthogonal deviations. They proposed to subtract the average of all future 

available observations. For each �9 − 1� observation, they subtract the mean of the 

remaining future observations available in the sample, instead of subtracting the 

                                                           
11 See Roodman (2009a) for further details regarding the difference and system GMM. This article also 

provides instructions about how to apply the GMM estimators in Stata through the xtabond2 command 
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previous observation from the contemporaneous one (Roodman, 2009a). Thus, only the 

last observation is kept out of the computation. For example: in a panel data of �9 = 3� 
the difference GMM produces one instrument per instrumenting variable and the 

system GMM produces two (Arellano and Bover, 1995; Blundell and Bond, 1998; 

Roodman, 2009b).  

Arellano and Bover (1995), Blundell and Bond (1998), and Roodman (2009b) also 

demonstrated a weak instrumentation of difference GMM, especially if the variables are 

close to a random walk, system GMM being the favored alternative. System GMM 

augments difference GMM by estimating simultaneously in differences and levels, 

(Roodman, 2009b). 

The system GMM estimator instruments the equation in levels with first-differenced 

variables in a “system” of equations that includes both equations in levels and 

differences (Wintoki et al., 2012): 

 

 ; 3��∆3��< = � + = > 3��*?Δ3��*?A + � > 5´��∆5´��A + 8�� �9� 

 

The xtabond2 command in the software Stata, developed by Roodman (2009b), provides 

the estimates of the system GMM, which was fully developed by Blundell and Bond 

(1998). They contributed to the method by eliminating the fixed effect not through 

instrumenting differences with levels but instrumenting levels with differences 

(Roodman, 2009c). The assumption required for the system GMM is that changes in any 

instrumenting variable �C� are uncorrelated with the fixed effects ��∆C��,�� = 0 

(Roodman, 2009c). 

 

In the design of the instrument matrix, we assume the climatic variable Cooling Degree-

Days to be strictly exogenous. For the appropriate instruments for predetermined 

variables we use: the lagged dependent variable, the price of electricity, and the natural 

gas price, with a lag limit of 2, and longer for the transformed equation, and lag 2 for the 
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equation in levels (Roodman, 2009a).12  

 

 

                                                           
12 The syntax used in Stata was the following: gmmstyle((������*�/ℎℎ��*��  ������ ; ���E��  , 

laglimits(2 2)) ivstyle ���%&&�. 
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Table 5. Pedroni Residual Cointegration Test 

 Statistic Prob. Weighted Statistic Prob. 

Panel v-Statistic -4.473 1.000 -4.633 1.000 

Panel rho-Statistic  9.151 1.000  8.746 1.000 

Panel PP-Statistic -15.135 0.000 -14.542 0.000 

Panel ADF-Statistic  NA NA  NA NA 

Alternative hypothesis: individual AR coefs. (between-dimension) 

 Statistic Prob.   

Group rho-Statistic  11.627 1.000   

Group PP-Statistic -27.688 0.000   

Group ADF-Statistic  NA NA   

 

Table 6. Hausman Test 

Correlated Random Effects – Hausman Test 

Test cross-section random effects 

Test Summary: Chi-Sq. Statistic Chi-Sq. d.f. Prob.  

Cross-section random:  66.046 6 0.000  

 

Table 7. Redundant Fixed Effects Tests 

Test cross-section fixed effects 

Effects Test Statistic d.f. Prob  

Cross-section F 49.126 (51.462) 0.000  

Cross-Section fixed effects test equation 

Variable Coefficient Std. Error t-Statistic Prob. 

C -2.303 0.410 -5.611 0.000 

������  -0.811 0.056 -14.388 0.000 

���E��  0.064 0.033 1.938 0.053 

���FG��  -0.331 0.051 -6.401 0.000 

��%&&�� 0.159 0.011 13.978 0.000 

��(&&�� -0.219 0.019 -11.424 0.000 

��#�� 0.405 0.040 10.097 0.000 
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4. Results 

Table 8 shows the estimations of the model specified in the previous sections. We also 

estimate the parameters for the relevant variables of the system GMM through Pooled 

OLS and Fixed Effects. These estimations will give us the suitable range of values of the 

lagged dependent variable (Bond, 2002; Roodman, 2009a). The p-values are below each 

coefficient. The standard errors are in parentheses below each p-value.  

 

Table 8. Empirical Estimates of the Residential Electricity Demand in Spain 

Dependent Variable: 

������/ℎℎ��� 

ECM 

System 

GMM 

Pooled 

OLS 

Fixed 

Effects 
Long-

Run 
Short-Run 

(∆��) 

� 

−1.923*** −0.001 −0.578*** −0.574*** −0.785* 

0.000 0.618 0.000 0.000 0.047 

(0.498) (0.003) (0.134) (0.139) (0.386)   

������  
−0.358*** −0.348*** −0.261*** −0.378*** −0.418*** 

0.000 0.000 0.000 0.000 0.000 

(0.039) (0.045) (0.049)   (0.068) (0.088) 

���E��  
−0.142*** −0.129*** −0.079** −0.016 −0.132** 

0.000 0.000 0.008 0.494 0.001 

(0.016) (0.015) (0.028)   (0.024) (0.037) 

���FG��  
−0.104** −0.121**    

0.013 0.006    

(0.042) (0.044)    

��%&&�� 
0.061** 0.062*** 0.048** 0.030** 0.080* 

0.001 0.000 0.004 0.009 0.030 

(0.018) (0.013) (0.015)    (0.011)    (0.036) 

��(&&�� 
0.067*     

0.034     

(0.031)     

��#�� 
0.111*     

0.042     

(0.055)     

∆������ − 1/ℎℎ�� − 1� 
 0.092* 0.596*** 0.716*** 0.177** 

 0.044 0.000 0.000 0.001 

 (0.046) (0.099) (0.059) (0.050)  

-�� − 1 

 −0.790***    

 0.000    

 (0.061)    
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R-squared 0.945 0.560  0.758 0.560 

Prob (F-statistic) 0.000 0.000 0.000 0.000 0.000 

Durbin-Watson stat. 1.470 2.048    

Number of Instruments   48   

Number of Groups 52 52 52  52 

HI�1�	test �J − value�   0.012   

HI�2�test �J − value�   0.642   

Hansen Test of over-identification 

�J − value�   
0.183   

Diff-in-Hansen tests of exogeneity 

�J − value�  
 0.766   

IV (lnCDD) Hansen Test excluding 

group 
 

 0.157   

We use asterisks alongside each coefficient to denote its significance: 

∗ p<0.05  ∗∗ p<0.01 ∗∗∗p<0.001 

 

Regarding the ECM Model, the long-run coefficients of electricity price, natural gas price, 

and cooling degree days have a significance level of 1%. Alternatively, the coefficients of 

the price of heating oil, the heating degree days, and the households’ disposable income 

have a significance level of 5%. The sign of the coefficients are as expected, that is, an 

increase in the price of electricity would reduce its consumption. In the same way, an 

increase in the price of heating oil and natural gas would reduce residential electricity 

consumption. This seems to corroborate that there is a complementary relationship 

between these energy sources in providing the collection of energy services needed in 

households. Blázquez et al. (2013) also found a significant and negative coefficient for 

the gas variable in their analysis of residential electricity demand in Spain, considering 

the period 2000 to 2008 and 47 Spanish provinces.13  

Climatic variables show a positive relationship with electricity consumption, that is, we 

could expect a greater use of heating and cooling devices run by electricity, as the 

weather gets cooler or hotter with respect to the base temperature. The income variable 

suggests that electricity consumption is a normal good, meaning that, the higher a 

household’s disposable income gets, the higher the electricity consumption is. 

Regarding the statistics values of the long-run ECM, the weighted Durbin-Watson 

Statistic estimated below 1.5 strongly indicates a positive first order serial correlation.  

                                                           
13 They considered the number of gas consumers divided by the number of houses to use the gas 

penetration rate as a proxy for the gas price. 
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Regarding the second step of the ECM, which provides the short-run elasticities, the 

significance of the error correction term confirms that the series are cointegrated.  

The significance level of 5% of the lagged dependent variable indicates that the 

electricity consumption in period + − 1 has a positive effect on the electricity 

consumption in period	+. Moreover, the value of the error correction term 	
�-�� − 1� indicates that the system corrects its previous disequilibrium at a speed of 79%. 

In the short-run, we found no significance of the HDDit coefficient, nor the income 

variable.  

It is important to recall that the income variable is at the regional level and not at the 

province level, this data issue might explain the significance level of just 5% in the long-

run and the no significance of the variable in the short-run. 

Regarding the system GMM estimates, we also found a significance level of 1% for the 

coefficients of electricity price, natural gas price, and cooling degree days, all these three 

coefficients have the expected sign. The results of these estimates heighten the 

potential complementary relationship between different energy sources when 

providing the collection of energy services needed by households, especially for 

electricity and natural gas. The sign and significance of the lagged dependent variable 

confirm the dynamic setting of our model. 

The lagged dependent variable coefficient seems a good estimate of the parameter; a 

useful check of it, when estimating through difference or system GMM, is to estimate 

the specified model through OLS and Fixed effects. The first estimation will give us the 

upper bound limit and the latter the lower bound one (Bond, 2002; Roodman, 2009a) 

The coefficient of the lagged dependent variable of the system GMM estimate fell into 

this range of values (0.716> 0.596 >0.177). 

The Hansen test failed to reject the null hypothesis of joint validity of the instruments. 

Additionally, for this specific test the conventional threshold of 0.05 and 0.10 when 

deciding whether a coefficient is significant or not should not be the only criterion. We 

should also treat with caution if the p-value is greater than 0.25 (Roodman, 2009b). The 

problem of too many instruments is that this impairs the efficiency of this test. This can 

overfit the endogenous variables and not succeed in taking out their endogenous 
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component (Roodman, 2009a). In this sense, Roodman (2009b, p. 142) stated that: “The 

conventional thresholds (0.05 and 0.10) are liberal when trying to rule out correlation 

between instruments and the error term.” The Hansen test reported from our 

estimations is below 0.25. Furthermore, as regards this issue, a minimally arbitrary rule 

of thumb found in the literature is that the number of instruments should be less than 

the number of groups (Roodman, 2009a), which is the case in our estimates (48<52). 

The difference-in-Hansen of 0.766 also failed to reject the null hypothesis of joint validity 

of all instruments; this statistic tests the validity of additional moments restrictions 

necessary for system GMM (Heid et al., 2012). The Cooling Degree-days is a valid strictly 

exogenous instrument given its reported Hansen test. 

By construction, a first order autocorrelation is expected, which is confirmed by the 

reported p-value of the HI�1�, which rejects the null hypothesis of no first order serial 

correlation. On the other hand, there is no evidence of a significant second order serial 

correlation HI�2�, as we failed to reject the null hypothesis. This presumes a proper 

specification of the system GMM (Heid et al., 2012). 

We use robust standard errors for the system GMM, we also use the one step system 

GMM results as we did not see major efficiency gains from the two steps. 

The p-value of the F-statistic of the five estimates rejects the null hypothesis that all 

slope coefficients are equal to zero. Hence, the estimated coefficients (excluding the 

constant) are jointly significant in explaining the household electricity consumption in 

Spain. 

The estimated results suggest a direct rebound between 26% and 35% in the short-run 

and 36% in the long-run for all energy services supplied by electricity in households. That 

is, an overall costless exogenous (Gillingham et al., 2016) increase in electricity efficiency 

potentially entailing savings of 10 megawatts hour (Mwh) per year in electricity 

consumption, would be reduced by between 26% and 35% in the short-run and 36% in 

the long-run. This would decrease final electricity savings to between 7.4 and 6.5 Mwh 

per year in the short-run and 6.4 Mwh per year in the long-run. 

Our findings are in line with previous studies concerning the direct rebound effect in 

households’ electricity consumption, with a slightly higher direct rebound effect in the 
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long-run than in the short-run. Our estimated direct rebound effect in Spanish 

households falls within the expected range in relation to the literature concerning this 

issue, around 30%; indicating electricity savings after the improvement in efficiency, as 

long as only the direct rebound effect is considered. Price elasticities are greater than 

income elasticities and weather variables’ elasticities are smaller than the former two. 

Taking into consideration the findings of this article, which are in line with the results of 

Freire-González (2010) for Catalonia, one can expect a greater response from 

households to price changes than to changes in income or weather variables in Spain. 

This fact highlights the relevance of improvements in efficiency to obtain energy savings, 

since the own-price elasticity of energy demand can be the proxy of the direct rebound 

effect (Sorrell, 2007). In the same sense, the variation in the associated pollutant 

emissions in Spain might be greater when prices change than when other variables 

change. 

Appendix 5 shows the robustness checks of the two econometric approaches we used. 

For the ECM approach, we specified a model using only the variables which have a 

significance level of 0.1% in the original model and so we drop the parameters of Heating 

oil Price, Heating Degree Days, and Income.  

For the System GMM approach, we specified a fixed effect model without lags as 

instruments and without the lagged dependent variable. We also specified another 

System GMM without the lagged dependent variable to arrange a new set of 

instruments.14  

Considering the variable of interest, which is the own-price elasticity of electricity 

demand, the resulting magnitudes from these models, with different specifications, are 

in the range of values shown in the literature between 30% and 50% (Freire-González, 

2017). Nevertheless, the models presented differently in Appendix V could overestimate 

the magnitude of our variable of interest, as they estimated a greater magnitude than 

our original model.  

 

                                                           
14 We use the same lag limits as the original model. 
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5. Conclusions 

The aim of this research was to obtain empirical evidence of the direct rebound effect 

for all energy services that require electricity for their provision in Spanish households. 

If there are no measures to tackle the direct rebound effect in Spain, our results indicate 

that electricity savings would be between 26% and 35% lower in a situation without 

direct rebound in the short-run and 36% lower in the long-run. 

According to the literature, the estimation of the direct rebound effect through the own-

price elasticity of energy demand could overestimate its magnitude (Sorrell, 2007). For 

most conversion devices, it is necessary to purchase new equipment to improve energy 

efficiency. Hence, if higher capital costs from more efficient conversion devices are not 

considered, the direct rebound effect could be overestimated to some extent. However, 

if the government promotes energy efficiency through subsidies, in order to make 

energy-efficient devices cheaper than the inefficient ones, the direct rebound effect may 

be underestimated (Sorrell, 2007; Sorrell and Dimitropoulos, 2008).  

Regarding the symmetry assumption, Schimek (1996) found approximately equal 

magnitudes when estimating the direct rebound effect through the elasticity of the 

demand for travel with respect to fuel efficiency ������� and with respect to fuel prices 

�������� (Sorrell and Dimitropoulos, 2007). In this case the energy service considered 

was transportation. On the other hand, Wheaton (1982) found a significant larger 

magnitude of the direct rebound effect when estimating it with respect to fuel prices 

than with respect to fuel efficiency (Sorrell and Dimitropoulos, 2007). One possible 

explanation of this could be that for consumers energy prices are more salient than 

energy efficiency. Hence, the symmetry assumption, when estimating the direct 

rebound effect with respect to electricity prices, could give an upper bound magnitude. 

Concerning the exogeneity assumption, it should not be a source of bias since the period 

analyzed is based upon a period of stability in energy prices.  

Since we estimated the direct rebound effect of a collection of energy services, the 

magnitude of the direct rebound effect of each of them is disguised (Sorrell and 

Dimitropoulos, 2007). Our results are more relevant for the energy services of lighting 
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and energy for appliances, as they dominate the consumption of electricity with a 

73.54% share.  

One substantial novelty of this paper is that we find a significant influence of other 

energy sources, which in the case analyzed are complementary to electricity (the energy 

source considered), in the estimation of the direct rebound effect. This newness in the 

estimation of the direct rebound effect opens up a new line of research, by means of 

exploring the relationship between different sources of energy in the study of the 

different rebound effect channels, either direct, indirect, or economy-wide. 

 

Another contribution of this paper is that this research is the first empirical analysis of 

this type for Spain. Using recent data from the 52 provinces of Spain, a time frame of 10 

years, and controlling the weather variables by using information on all provinces’ 

weather stations, we found a significant direct rebound effect of less than 100% in all 

estimates. We also provide the individual short- and long-run fixed effects of each 

Spanish province. Hence, our results provide useful information to policymakers at 

different levels. 

The reduction in electricity savings caused by the direct rebound effect estimated in this 

research is relevant for energy and environmental policies in Spain. Given the goals 

assumed by Spain in the EU context as regards energy efficiency and greenhouse gas 

emissions mitigation, Spanish policymakers should incorporate additional measures to 

tackle the direct rebound effect to increase the effectiveness of the measures to 

produce electricity savings and reduce the associated pollutant emissions (Freire-

González and Puig-Ventosa, 2014). Our findings suggest that, given the value of price 

elasticities coefficients, if the authorities want to maximize the electricity savings 

associated to efficiency improvements in Spain, an electricity pricing policy could be 

implemented. 
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Appendix I Energy carrier price categories 

Table A3: Electricity Price Categories. 

Band Annual Consumption 

DA Consumption < 1000 kWh 

DB 1000 kWh < Consumption < 2500 kWh 

DC 2500 kWh < Consumption < 5000 kWh 

DD 5000 kWh < Consumption < 15000 kWh 

DE Consumption > 15000 kWh 

Source: Own elaboration based on the European Commission Database of Energy Statistics. 

 

Table A4: Natural Gas Price Categories 

Band Annual Consumption 

D1 Consumption < 20 GJ 

D2 20 GJ < Consumption < 200 GJ 

D3 Consumption > 200 GJ 

Source: Own elaboration based on the European Commission Database of Energy Statistics. 

 

Appendix II Calculation method of the climatic variables 

Table A5. Calculation of Heating and Cooling degree-days 

Condition Heating Degree Days Formula 

Tmin>Tbase  HDD = 0  

(Tmax+Tmin)/2>Tbase HDD = (Tbase-Tmin)/4  

Tmax>=Tbase HDD =(Tbase-Tmin)/2-(Tmax-Tbase)/4  

Tmax<Tbase HDD =Tbase-(Tmax+Tmin)/2 

Condition Cooling Degree Days Formula 

Tmax<Tbase  CDD = 0  

(Tmax+Tmin)/2<Tbase  CDD = (Tmax-Tbase)/4  

Tmin<=Tbase  CDD = (Tmax-Tbase)/2-(Tbase-Tmin)/4  

Tmin>Tbase  CDD = (Tmax+Tmin)/2-Tbase  

Source: https://www.degreedays.net/calculation 
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Appendix III. Data on final energy consumption of Spanish households 

Figure A1. Sources of energy for final energy consumption in Spanish households (Ktep) (2010-

2015). Source: IDAE 2010 

 
 

Table A1. Final energy consumption by uses of residential sector (ktep). Period 2010–2015. 

2015 

Energy source Space 

Heating 

Space 

Cooling 

Water 

Heating 

Cooking Lighting and 

Appliances 

  TOTAL 

Electricity 444 141 450 560 4,431   6,025 

Heat 0 0 0 0 0   0 

Gas 1,398 0 1,291 329 0   3,017 

Solid Fuels 72 0 6 11 0   89 

Petroleum Products 2,174 0 625 187 0   2,985 

  LPG 393 0 465 187 0   1,045 

Other Kerosene 0 0 0 0 0   0 

Diesel Oil 1,781 0 160 0 0   1,941 

Renewable Energy 2,460 2 259 27 0   2,749 

  Solar Thermal 16 0 205 0 0   221 

Biomass 2,439 0 52 27 0   2,517 

Geothermal 5 2 3 0 0   11 

TOTAL  6,548 143 2,631 1,113 4,431   14,865 

 

Source: IDAE 2010. 
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2014 

Energy Source Space 

Heating 

Space 

Cooling 

Water 

Heating 

Cooking Lighting and 

Appliances 

  TOTAL 

Electricity 448 142 454 565 4,472   6,081 

Heat 0 0 0 0 0   0 

Gas 1,433 0 1,324 337 0   3,094 

Solid Fuels 75 0 6 11 0   92 

Petroleum Products 1,876 0 607 191 0   2,674 

  LPG 401 0 474 191 0   1,066 

Other Kerosene 0 0 0 0 0   0 

Diesel Oil 1,476 0 133 0 0   1,608 

Renewable Energy 2,479 2 243 27 0   2,751 

  Solar Thermal 15 0 188 0 0   203 

Biomass 2,459 0 52 27 0   2,537 

Geothermal 5 2 3 0 0   11 

TOTAL 6,311 144 2,634 1,131 4,472   14,691 

Source: IDAE 2010. 

 

 

 

 

2013 

Energy Source Space 

Heating 

Space 

Cooling 

Water 

Heating 

Cooking Lighting and 

Appliances 

  TOTAL 

Electricity 450 143 456 568 4,494   6,111 

Heat 0 0 0 0 0   0 

Gas 1,479 0 1,366 348 0   3,193 

Solid Fuels 77 0 6 11 0   95 

Petroleum Products 1,858 0 636 204 0   2,698 

  LPG 429 0 507 204 0   1,140 

Other Kerosene 0 0 0 0 0   0 

Diesel Oil 1,429 0 128 0 0   1,558 

Renewable Energy 2,462 2 231 27 0   2,722 

  Solar Thermal 14 0 176 0 0   190 

Biomass 2,443 0 52 27 0   2,521 

Geothermal 5 2 3 0 0   10 

TOTAL 6,327 145 2,695 1,158 4,494   14,819 

Source: IDAE 2010. 
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Source: IDAE 2010. 

 

2011 

Energy source Space 

Heatin

g 

Space 

Coolin

g 

Water 

Heatin

g 

Cookin

g 

Lighting 

and 

Appliance

s 

  TOTAL 

Electricity 482 153 489 608 4,814   6,545 

Heat 0 0 0 0 0   0 

Gas 1,580 0 1,460 372 0   3,411 

Solid Fuels 100 0 8 15 0   122 

Petroleum 

Products 

1,913 0 677 220 0   2,809 

  LPG 462 0 546 220 0   1,228 

Other Kerosene 0 0 0 0 0   0 

Diesel Oil 1,451 0 130 0 0   1,581 

Renewable Energy 2,413 2 206 26 0   2,647 

  Solar Thermal 12 0 152 0 0   164 

Biomass 2,396 0 51 26 0   2,473 

Geothermal 5 2 3 0 0   10 

TOTAL  6,488 155 2,839 1,240 4,814   15,53

5 

Source: IDAE 2010. 

 

2012 

Energy source Space 

Heatin

g 

Space 

Coolin

g 

Water 

Heatin

g 

Cookin

g 

Lighting 

and 

Appliance

s 

  TOTAL 

Electricity 476 151 482 600 4,749   6,458 

Heat 0 0 0 0 0   0 

Gas 1,625 0 1,501 382 0   3,509 

Solid Fuels 89 0 7 13 0   110 

Petroleum 

Products 

1,784 0 653 214 0   2,651 

  LPG 451 0 533 214 0   1,198 

Other Kerosene 0 0 0 0 0   0 

Diesel Oil 1,333 0 120 0 0   1,453 

Renewable Energy 2,452 2 220 26 0   2,700 

  Solar Thermal 13 0 165 0 0   178 

Biomass 2,434 0 51 26 0   2,512 

Geothermal 5 2 3 0 0   10 

TOTAL  6,426 153 2,863 1,236 4,749   15,42

8 
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Source: IDAE 2010. 

  

2010 

Energy source Space 

Heatin

g 

Space 

Coolin

g 

Water 

Heatin

g 

Cookin

g 

Lighting 

and 

Appliance

s 

  TOTAL 

Electricity 479 152 486 605 4,786   6,508 

Heat 0 0 0 0 0   0 

Gas 1,972 0 1,821 464 0   4,257 

Solid Fuels 141 0 11 21 0   173 

Petroleum 

Products 

2,238 0 771 248 0   3,257 

  LPG 521 0 617 248 0   1,386 

Other Kerosene 0 0 0 0 0   0 

Diesel Oil 1,717 0 154 0 0   1,871 

Renewable Energy 2,403 2 186 26 0   2,617 

  Solar Thermal 11 0 133 0 0   144 

Biomass 2,388 0 51 26 0   2,464 

Geothermal 5 2 3 0 0   9 

TOTAL  7,233 154 3,275 1,363 4,786   16,81

2 
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Appendix IV. Fixed Effects of each Spanish Province 

Table A2: Cross-Section Fixed Effects 

Provinces Fixed Effect �,�� Table 11 Fixed Effect �,�� Table 12 

    

1. Alava -0.070  0.008 

2. Albacete  0.002 -0.000 

3. Alicante  0.030 -0.014 

4. Almeria  0.029 -0.003 

5. Avila -0.412 -0.018 

6. Badajoz -0.034  0.002 

7. Barcelona  0.116  0.010 

8. Bizkaia  0.027  0.001 

9. Burgos -0.084  0.036 

10. Caceres -0.151 -0.014 

11. Cadiz  0.081 -0.010 

12. Cantabria -0.008  0.010 

13. Castellon -0.009  0.006 

14. Ceuta  0.140  0.015 

15. Ciudad Real  0.060 -0.001 

16. Cordoba  0.227  0.006 

17. Coruna A  0.083 -0.006 

18. Cuenca -0.178 -0.007 

19. Gipuzkoa  0.045  0.008 

20. Girona  0.006  0.004 

21. Granada  0.014 -0.011 

22. Guadalajara  0.003  0.013 

23. Huelva  0.001  0.006 

24. Huesca -0.075 -0.000 

25. Baleares  0.380  0.002 

26. Jaen  0.150  0.001 

27. La Rioja -0.143  0.002 

28. Las Palmas  0.297 -0.009 



44 

 

29. Leon -0.187  0.007 

30. Lleida  0.079  0.011 

31. Lugo -0.079  0.008 

32. Madrid  0.120 -0.004 

33. Malaga  0.188 -0.007 

34. Melilla  0.092 -0.010 

35. Murcia  0.206  0.001 

36. Navarra -0.001 -0.002 

37. Ourense -0.208 -0.002 

38. Palencia -0.245  0.011 

39. Pontevedra  0.094 -0.001 

40. Asturias -0.050 -0.016 

41. Tenerife  0.170 -0.011 

42. Salamanca -0.198 -0.007 

43. Segovia -0.093  0.005 

44. Sevilla  0.262 -0.004 

45. Soria -0.317  0.011 

46. Tarragona -0.036  0.001 

47. Teruel -0.200 -0.008 

48. Toledo  0.132 -0.008 

49. Valencia  0.073 -0.006 

50. Valladolid -0.058  0.005 

51. Zamora -0.289 -0.009 

52. Zaragoza  0.014 -0.000 

Source: own elaboration. 
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Appendix V. Robustness Checks 

Dependent 

Variable: 

������/ℎℎ��� 

ECM ECM 

System 

GMM 

System 

GMM 

(OM) 

Fixed 

Effects 
Long-

Run 

Short-

Run (∆��) 

Long-

Run 

(OM) 

Short-

Run (∆��) 

(OM) 

� 

−0.520** 0.003 
−1.923*** −0.001 

−0.937*** −0.578*** −0.520** 

0.001 0.091 0.000 0.618 0.000 0.000 0.001 

(0.162) 
(0.002) (0.498) (0.003) 

(0.241) (0.134) (0.162) 

������  

−0.408**

* 
−0.409*** 

−0.358*** −0.348*** 

−0.567*** −0.261*** −0.408*** 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 

(0.033) (0.036) (0.039) (0.045) (0.065)   (0.049)   (0.033) 

���E��  

−0.159**

* 
−0.137*** 

−0.142*** −0.129*** 

−0.049 −0.079** −0.159 

0.000 0.000 0.000 0.000 0.358 0.008 0.000 

0.015 (0.014) (0.016) (0.015) (0.053)   (0.028)   (0.015) 

���FG��  Withou

t 
Without 

−0.104** −0.121**    

0.013 0.006    

(0.042) (0.044)    

��%&&�� 
0.063*** 0.061*** 

0.061** 0.062*** 
0.120*** 0.048** 0.063 

0.000 0.000 0.001 0.000 0.000 0.004 0.000 

0.0169 
(0.012) 

(0.018) (0.013) 
(0.240)    (0.015)    (0.016) 

��(&&�� Withou

t 
Without 

0.067*     

0.034     

(0.031)     

��#�� Withou

t 
Without 

0.111*     

0.042     

(0.055)     

∆������− 1/ℎℎ�� − 1� 
 

0.132** 
 0.092* 

Without 

0.596*** 

Without 
 0.001  0.044 0.000 

 (0.041)  (0.046) (0.099) 

-�� − 1 

 
−0.813*** 

 −0.790*** 
   

 0.000  0.000    

 (0.058)  (0.061)    

        

R-squared 
0.945 

0.559 0.945 0.560  
 0.945 

Prob (F-statistic) 
0.000 

0.000 0.000 0.000 0.000 0.000 
0.000 

Durbin-Watson 

stat. 
1.445 

2.062 1.470 2.048   1.445 

Number of 

Instruments 
    34 48 Without 
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Number of 

Groups 

52 
52 52 52 52 52 52 

HI�1�	test �J −
value�     0.037 0.012 

 

HI�2�test �J −
value�     0.103 0.642 

 

Hansen Test of 

over-

identification 

�J − value� 
    0.059 0.183 

 

Diff-in-Hansen 

tests of 

exogeneity �J −
value� 

  
 

 0.543 0.766 

 

IV (lnCDD) 

Hansen Test 

excluding group 

  
 

 0.056 0.157 

 

(OM) stands for Original Model 

We use stars alongside each coefficient to denote its significance: 

∗ p<0.05  ∗∗ p<0.01 ∗∗∗p<0.001 
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