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Abstract

This study aims to analyze whether higher efficiency performance of Ecuadorian
hospitals attracts larger inflows of interregional patients to a given hospital and the
existence of spatial dependence in terms of larger inflows of patients for neighboring
hospitals in the region. We develop a novel two-stage approach. In the first stage, we
use conditional order-m estimations to obtain robust efficiency values for each hos-
pital. In the second stage, we use a spatial Durbin interaction model to estimate the
effect of hospital efficiency on patient migration flows and disentangle the spillover
effects in the migration dyad. The results show a positive effect of specialized hospi-
tals” efficiency in attracting patients from other regions. In addition, patient inflows
present spillover effects not just on neighboring hospitals in the same region but also
from hospitals in regions neighboring the origin. Policy implications mostly drive
the attention to the importance to elaborate well planned healthcare strategies taking
care of territorial externalities. Negative shocks affecting specialized hospitals could
imply an adverse effect on the flow of patients to the whole region, affecting the re-
gional public healthcare performance and potential welfare gains. Conversely, more
resources could be directed to less-developed regions to incentivize competition.

Keywords: hospital efficiency, patient migration, spatial dependence, spillover ef-
fects.
JEL: C18,C61, H75,111, R23

I want to acknowledge the support of the Pre-doctoral Trainee Research Scholarship (PIF) from the Au-
tonomous University of Barcelona. I want to thank my supervisors Rosella Nicolini and Diego Prior. The
participants of the seminars at UAB, the University of Brescia, the University of Gothenburg, the WRSA
international conference, the scientific committee of the PhD on Applied Economics. To Riccardo Turati,
Gabriel Facchini, José Luis Roig, Nicola Pontarollo, Rosella Levaggi, and Francesco Moscone for their com-
ments to improve this paper. To James LeSage and Christine Thomas-Agnan for facilitating the MATLAB
and R codes. Any remaining errors are the author’s own responsibility.



1 Introduction

In healthcare system analysis, patient choice of hospitals and the resulting patient mo-
bility has been a topic that has occupied a vast body of the literature over the past two
decades (Balia et al., 2014). Models that allow patient choice of hospitals have a wide
spread of useful applications both for governments and the hospitals’ own governance
(Lowe and Sen, 1996). In this context, Balia et al. (2014) state that the importance to
assess patient mobility can be twofold. First, the geography of patient mobility yields in-
dications on the actual level of services provided. This can be particularly useful given
that the preferences of the individuals are not perfectly observable. For example, patient
outflows might reveal the possible inefficiency or low quality of public healthcare supply
in a given region.! Second, the flow imbalances across regions may challenge the stability
of their healthcare budgets. This kind of information can be useful for central planners
and regional authorities interested in correcting inefficiencies in the system as well as
improving the healthcare system performance. Understanding the mobility patterns of
healthcare consumers may represent an important tool for the central government and
regional planners to identify clusters of hospitals and take advantage of spillover effects
to better allocate the resources and enhance the efficiency of the system.

Essentially, patients move because they want to get the best hospital treatment that
the system can provide, or at least better services than those offered in their local region.
They can be expected to move when possible inefficiencies translate into longer waiting
lists but also when the perceived quality of the local healthcare services is low (Aiura,
2013; Balia et al., 2014). These movements might be permanent over time if the local
regions in a country present a certain level of asymmetry in their systems (Balia et al.,
2018).

In this sense, there is a strand running through the literature stating that eliminating
barriers of access to healthcare, and thus giving patients the ability to choose between hos-
pitals, creates a financial incentive for providers to compete among them, which leads to
improvements in quality of care (Bloom et al., 2015; Gravelle et al., 2014; Propper, 2012).
This theory might hold in a country where the healthcare system is rather homogeneous
across regions. However, when regional disparities are significant and persistent over
time, high-income regions tend to offer a better quality of care. This motivates patients
to move from low- to high-income regions seeking better treatment. In turn, the dynamic
of such flows, closely relating with the spatial pattern, could be giving rise to network
effects often detected in the data and translating into a structure correlation, known in
the literature as spatial dependence (Anselin, 2010).

An interesting context of analysis is brought to this setting by Ecuador, whose marked

'Throughout this paper, hospital efficiency reflects the ability of a hospital to properly make use of
its resources or inputs (e.g., physicians, medical equipment, capacity, etc.) to provide medical attention
derived from given outputs (e.g., patients treated, treatments carried out, etc.). In this sense, a fully efficient
hospital can maximize its outputs with a given amount of inputs. This is commonly known in the healthcare
efficiency measurement literature as technical efficiency (Hollingsworth, 2008).



regional disparities offer us a framework of study that can allow us to understand the
interregional and intraregional dynamics of patient mobility that can be driven by the
performance gaps of their heterogeneous hospitals.

Like other Latin American countries, Ecuador has suffered a continuous process of
deterioration of its public healthcare system, which has been exacerbated by the neolib-
eral reforms of the 1990s and the 2000s, resulting in a widening of the existing territorial
disparities in the country. These disparities derived in a concentration of healthcare re-
sources in a few public hospitals (the high-performers), which at the same time were
located in developed regions (Piedra-Pefia, 2020).2 With the approval of the new consti-
tution in 2008, new healthcare reforms were enhanced to promote free access of medi-
cal care and an increase of social security coverage. This gave patients the possibility of
choosing the hospital where they wanted to receive treatment.®> At the same time, this in-
creased the demand for medical attention, promoting a behavior of mobilization to seek
treatment in developed regions (Piedra-Pefa, 2020).

As the barriers of access vanished, patients were expected to seek better treatment in
areas where they perceived would get the best possible treatment, leading to patient mo-
bility. Mobility then caused an increase in patient demand, and this can result in two
different outcomes. On the one hand, higher demand fuels competition among hospitals
in the region, resulting in an increase in quality of care or more efficient use of resources
in order to cope with the demand. On the other hand, when demand for hospital treat-
ment increases, hospitals become crowded and additional resources are needed to reduce
congestion, entailing eventually inefficiencies like longer waiting times and finally in an
underprovision of public services such as healthcare (Aiura, 2013). Moreover, if devel-
oped regions are the receivers of a bigger share of patients, one can expect that other
adjacent hospitals may receive patients driven by the demand at their neighbors.*

So far, the literature on patient mobility has focused on identifying and measuring the
effects of the determinants on patient flows either between regions or between healthcare
institutions, but there has not been an empirical study that assesses the dynamics of in-
terregional patient mobility in the hospitals within a given region. Understanding these
dynamics can help regional planners and hospital managers to understand the patterns
of demand as not just interregional but also intraregional patient flows. High-performing
hospitals can be prepared for potential boosts in demand generated by new reforms that
widen the insured population or allow for the gratuity of medical services. They can ac-
count for these demand increases and plan to improve their capacity, medical staff, or
technological endowment. Low-performing hospitals can also benefit from this, and en-

2Refer to Appendix A for a description of the Ecuadorian healthcare institutional framework

3The new constitution approved in 2008 (which stated that health is a right guaranteed by the state who
will ensure full exercise of the right and access to social insurance) provided reforms aiming at providing
higher access to medical treatment, like the gratuity of medical services provided by the Public Ministry of
Health (MSP) or laws that deprived the liberty to employers that do not affiliate workers (Orellana et al.,
2017; Piedra-Pefia, 2020)

“For example, if a given hospital has a long waiting list, patients could try to receive attention in alter-
native hospitals in the region.



hance their medical resources as well, to increase their performance and avoid possible
outflows of patients.

Piedra-Pena (2020) emphasizes the important influence that patient mobility can have
on the performance of any given public hospital in Ecuador and that of surrounding hos-
pitals as well, given the spillover effects in hospital efficiency.> Here we seek to under-
stand the patterns of these patient flows and determine the extent to which these perfor-
mance gaps are driving people to move from different regions to be treated in a (high-
performing) hospital, and what the repercussions are for their surrounding hospitals.

Thus, this study aims to analyze whether higher hospitals’ efficiency performance en-
courages larger inflows of interregional patients to a given hospital and whether these
are accompanied by larger inflows of patients for neighboring hospitals in the region. So
far, the literature on healthcare economics has focused on the measurement of the effects
of hospital competition, patterns of access to hospital services, and the determinants of
patient migration flows by just accounting for the spatial distance between hospitals or re-
gions, using gravity models (e.g., Congdon, 2001; Varkevisser et al., 2012; Moscelli et al.,
2016). A large part of the literature has concluded that the healthcare efficient perfor-
mance of hospitals and regions is a strong driver of patient mobility. But there has not
been an attempt—to our understanding—to consider the possible spillover effects that
give rise to higher patient migration flows to neighboring hospitals. In this respect, our
contribution to the literature is to provide a robust measure of hospital efficiency, con-
sistent with economic theory, that allows us to identify ifs effect to attract patients. In
addition, if spillover effects in the patient migration network are significant, this mea-
sure can serve as a reliable tool for decision-making to identify key hospitals that attract
demand and foster competition.

To that end, we follow an innovative two-stage approach. In the first stage, we make
use of the conditional order-m efficiency measurement proposed by Cazals et al. (2002),
Daraio and Simar (2005), and Daraio and Simar (2007b) to obtain robust efficiency mea-
sures for Ecuadorian public hospitals in 2014. This method is based upon the economic
concept of Pareto efficient allocation and takes into consideration the effect of other en-
vironmental variables (related to the region) in the hospital performance. In the sec-
ond stage, we address patient mobility flows with spatial interaction models proposed by
LeSage and Pace (2008) and LeSage and Pace (2009), which take into account traditional
origin-destination (OD) models, but incorporate spatial lags of the dependent variable in
order to account for spatial dependence, represented by flows from neighboring regions in
these models and accommodating for endogenous interactions (i.e., global spillovers). In
addition, we consider exogenous interaction arising from contextual effects, accommodat-
ing for spatial dependence of the explanatory variables, and representing characteristics
of the neighboring regions and hospitals (i.e., local spillovers) (LeSage and Fischer, 2016).

>Piedra-Pefia (2020) provides evidence of the existence of positive spatial dependence in public hospital
efficiency deriving from the existence of global and local spillover effects. In other words, the increase in
the efficiency of neighboring hospitals is having a positive impact on the efficiency of an observed hospital
as well.



In the applied literature, these models have been used in cases where origins and destina-
tions coincide (LeSage and Thomas-Agnan, 2015). However, this is not our case: the list of
origins (cantons) differs from the list of destinations (hospitals).® This calls for a modifi-
cation in the econometric estimation which has been recently addressed by Laurent et al.
(2019) that, to our understanding, has not yet been applied, and constitutes an additional
contribution of our study.

In our context, the presence of endogenous interaction effects and, therefore, global
spillovers mean that patient flows between an OD pair directly affect one another.” For
example, a change in patient inflows traveling along a given OD pair, generated by vari-
ations in efficiency, potentially impact patient movements originating from a canton and
going to alternative hospitals, originating from alternative cantons to a given hospital or
originating from alternative cantons going to alternative hospitals. In contrast, exoge-
nous interaction effects, hence, local spillovers imply that changes in the characteristics
of neighboring cantons or regions affect the variations in patient flows across OD dyads.
Taking once again efficiency as an example, the existence of local spillovers would be sug-
gesting a competition effect among hospitals within the canton, as the increase in neigh-
boring hospital efficiency would imply a higher inflow of patients for the region.

Our results show that efficiency is a strong determinant of interregional patients mi-
gration. However, this effect is significant just when we consider specialized hospitals (as
opposed to basic hospitals). We observe significant global spillover effects in the form of
patients traveling to neighboring hospitals within a region and coming from neighboring
regions of the origin canton. These findings represent a useful tool for policy makers.
Future healthcare reforms need to be well controlled and implemented since they need to
consider territorial differences not just in terms of healthcare resources but in the level of
specialization as well. In Ecuador, the specialized hospitals are concentrated in a few de-
veloped areas, and their performance is affecting the flow of patients coming from other
cantons. Because spillover effects are present, other hospitals within the region seem to
be benefiting from this inflow. Higher competition among hospitals could lead to higher
quality of treatment (Gravelle et al., 2014; Longo et al., 2017), but it could be detrimental
if bigger inflows give rise to congestion effects. Furthermore, future public investment in
healthcare services could target clusters of hospitals in low-income regions who are likely
to be the origin of patient migration flows toward high-performing hospitals. A sustain-
able strategy could be to support the construction of more specialized hospitals —or the
implementation of specialization wards in existing ones— that could serve more patients
and focus on incentives to fuel local hospital competition so as to reduce the healthcare
quality gap with respect to high-performing hospitals.

This study is structured in the following way. Section 2 reviews the literature on hos-

®In Ecuador, cantons are the second-level administrative divisions. The Republic of Ecuador is divided
into 24 provinces, which in turn are divided into 221 cantons. The cantons in turn are subdivided into
parishes.

"Hereinafter, we will refer to cantons (or regions) as the origin observations of our OD dyad. Conversely,
hospitals will be referred to as the destinations of the OD dyad.



pital patient migration. In Section 3, the theoretical model is described, as introduced
by Brekke et al. (2016), which is followed throughout this study. Section 4 explains the
methodology of the order-m efficiency measurement and the spatial interaction model,
while Section 5 introduces the empirical approximation used. Section 6 describes our
dataset and Sections 7 and 8 present the results and robustness analysis, respectively.
Finally, the main conclusions are presented in Section 9.

2 Literature Review

The aim of our study is to single out the effect that hospital efficiency has on interregional
patient mobility. Moreover, we want to disentangle the potential spillover effects found in
these mobilization flows between and within regions so, we can identify demand patterns
of healthcare treatment that can be used as a tool for decision-making. In so doing, we
combine two different strands of the literature: healthcare efficiency measurement and
patient mobilization literature. There is a vast body of literature on healthcare efficiency
measurement that focuses on obtaining a single value that measures the efficiency perfor-
mance of an observed unit through parametric and non-parametric methods that combine
multiple inputs and outputs. The idea of efficiency is linked to the concept of Pareto ef-
ficient allocation, where those efficient units are either minimizing inputs or maximizing
outputs in the production of health (i.e. in providing medical attention). The main ad-
vantage of these approaches is that we can rely in a single estimated efficiency score, more
consistent with economic theory, as it allocates technical or Pareto inefficiencies instead
of measuring efficiency based on single averages (Cantor and Poh, 2018). A rich review of
this literature can be found in O’Neill et al. (2008), Hollingsworth (2008) and Cantor and
Poh (2018).

Furthermore, we rely on the hypothesis that the performance of a given set of hospitals
is going to be determined —to a certain extent— by regional characteristics, and specially by
the level of development or income level in the region (Brekke et al., 2016) due to the evi-
dent territorial disparities in Ecuador (Piedra-Pefia, 2020). In order to estimate efficiency
scores that introduce environmental variables as a constraint of hospital performance,
the applied literature indicates that they can be treated in one-step or two-step estima-
tion models. The main setback of two-step approaches relies on a separability condition
between the input-output space and the space of the contextual factors, assuming that
these have no effect on the production process (Daraio and Simar, 2007b). To avoid the
separability assumption and provide meaningful results, we implement a non-parametric
method know as the conditional order-m efficiency estimation (Cazals et al., 2002; Daraio
and Simar, 2005).8 Recent applications of this technique include Halkos and Tzeremes
(2011), who perform a conditional order-m efficiency analysis on Greek prefectures, and
find a negative relationship between per-capita GVA and efficiency; whilst population
density has a positive effect in hospital performance. Other micro-level approaches as

8We explain this method on a deeper extent on Section 3



Mastromarco et al. (2019) analyze the cost efficiency of Czech Republic hospitals during
the period 2006-2010. They implement an order-m efficiency estimation controlling for
non-profit status, teaching status, presence a specialized center (in the hospital) and oc-
cupancy rate, finding that non-profit hospitals, university hospitals and hospitals with
specialized centers are generally less efficient. Another advantage of conditional order-m
estimation is that we do not need to assume a production function in the estimation pro-
cess. This is particularly important in our study, as the multidimensional nature of public
hospitals and regional heterogeneity in the country posits a difficulty at the time of de-
fending the assumption of a single production function for all hospitals in the sample.

However, despite the clear advantages of these methods to provide a robust estima-
tion of efficiency, there has not been an attempt to combine them along with econometric
models to study patient mobility patterns. The empirical literature directly focused on
patient mobility has been developed in the past decade. Instead of focusing on specific
determinants of patient flows, it centers on modeling hospital choices and flows across
different jurisdictions (Balia et al., 2014). Some micro-level studies single out potential
determinants of mobility. Victoor et al. (2012) offer a survey in which they put in evidence
that some common determinants of patient mobility can refer to patient characteristics
(e.g. education, income, and age) and provider characteristics. They classify the former
in Structure indicators (which concern the organization of healthcare), Process indicators
(which relate to the care delivery process), and Outcome indicators (which indicate the
effect of the care delivered). In most of these studies, the performance of a hospital has
been proxied by basic productivity indexes and capacity indicators.

In our setting, we need to take into account macro economics (regional) variables
since they impact patient decision of seeking care across regional borders. In this re-
spect (macro-level) applied economic studies have mainly been based on gravity models,
commonly used to model flows that take many forms, like population migration, com-
modity flows and traffic flows (Thomas-Agnan and LeSage, 2014). These models embed
movements of individuals between origin and destination regions. Levaggi and Zanola
(2004) look for the determinants of net patient flows from regions of Italy to the rest of
the country. They estimate gravity models for a sample of Italian regions from 1995-1997
and conclude that regions characterized by lower outflows are the ones that provide bet-
ter or faster services. Cantarero (2006) develops the same analysis to patient flows across
regions in Spain between 1996 and 1999 and identify that patients from the economically
lagged regions move more than those regions that provide better health services. Fabbri
and Robone (2010) explore the “trade” phenomenon in hospital care, exploring the role
of the scale economies and the impact of North-South economic divide on the mobility of
Italian Local Health Authorities (LHAs) controlling for push and pull factors of patients
related to origin and destination. They find that richer LHAs have a higher probability of
attracting more patients, who present the most severe cases.

However, the use of traditional gravity models to explain spatial interaction can be
limited. These models rely on a function of the distance of the OD to clear spatial corre-
lation and cross-section independence. As LeSage and Pace (2008, 2009) state, the notion



that use of distance functions to effectively capture the spatial dependence of observations
can be erroneous. Also, the idea that flows are independent since OD flows are fundamen-
tally spatial in nature. In our framework of analysis, we expect to find a behavior pattern
where high-income regions are the main receivers of patients, following a spatial pattern,
that, if not controlled for in the econometric estimation, could lead to biased conclusions.

So far, no studies have tried to account for the spatial dependence in patient mobil-
ity. Moreover, even when a big part of the literature implicitly concludes that healthcare
performance is a strong driver of patient flows, but there has not been an attempt to dis-
entangle its sole effect. The closest paper to our approximation is Balia et al. (2018) who
account for local spillover effects by incorporating the spatial lags of the exogenous vari-
ables in the gravity model. They use a spatial panel data framework of Italian hospital
discharges between 2001 and 2010 to assess the effect of the main determinants of inter-
regional patient flows, differentiating between the impacts of regional health policies and
other exogenous factors. Their results show that neighboring regions” supply factors,
specialization and performance largely affect mobility by generating local externalities
that explain OD patient flows; bringing some insights of the inherent spatial-dependent
nature of hospital performance, and, its effects on patient mobility.

Our empirical estimation, hence, goes beyond the incorporation of local spillover ef-
fects as in Balia et al. (2018), and includes potential global spillover effects likely found
in OD flows, as stated by LeSage and Pace (2008, 2009). In so doing, we use the ex-
tended gravity models developed by LeSage and Pace (2008, 2009) to allow for spatial
dependence in the sample, represented by the flows from cantons (regions) to public hos-
pitals in these models. Additionally, we consider exogenous interactions of the explana-
tory variables (LeSage and Fischer, 2016) to accommodate for the contextual effect of the
neighboring regions and hospitals in the OD dyad, as in Balia et al. (2018). The introduc-
tion of endogenous and exogenous interactions in the econometric model allow us to take
into consideration the spatial structure present in OD flow data that is not completely
captured by the sole inclusion of the distance between origin and destination. If spillover
effects are found statistically significant, then policy implications may be directed to iden-
tify key players within the flow network that have an indirect effect over other hospitals.
Policy decisions can target those key players to improve healthcare performance of the
region.

3 Theoretical framework

In our framework of study, the high-performing hospitals are mainly located in devel-
oped regions (see Section 6) that have historically concentrated the healthcare resources
in the country (Piedra-Pefia, 2020; Piedra-Pefa and Prior, 2020). These asymmetries in
hospital performance have derived in regional healthcare performance gaps that may in-
centive those patients residing in less developed regions (cantons) to seek treatment in
high-performing hospitals. In this context, the backbone of our theoretical framework



builds upon Brekke et al. (2014) and Brekke et al. (2016). They take a context of asym-
metrical regions, where the regions differ in their ability to provide healthcare services,
the higher the performance gap between providers, the higher the number of patients
who will seek medical care in high-income regions. Here, Brekke et al. (2014) state that
patient mobility can have significant participation in the improvement of welfare. Al-
beit, this welfare improvement comes with asymmetric effects. If competition promotes
performance, then patients living in regions with high-performing hospitals are better-
off than in a system without mobility. Conversely, in areas of low-performing hospitals,
only patients who move to high-performing areas benefit from the quality improvement
in healthcare. Additionally, Brekke et al. (2016) consider a framework with heteroge-
neous income across and within regions. They find that reducing barriers to free patient
mobility represents an incentive to reduce quality for low-middle income regions while
increasing income disparities between regions increase the interregional quality gap.

We take upon Brekke et al. (2016) corss-border patient mobility theory. The theoreti-
cal model relies on the idea that, in equilibrium, regions with higher income offer better
quality, which creates an incentive for patient mobility from lower to higher income re-
gions. This conception can be applied to our setting, as the best-performing hospitals are
mainly located in high-income regions (Piedra-Pefia, 2020; Piedra-Pefia and Prior, 2020).°
Following Brekke et al. (2016), let us define a uniformly distributed healthcare market
where patients are distributed on a circle with circumference equal to 1 and the total pa-
tient mass normalized to 1. Consider three different neighboring regions of equal size
(i =L,M, H) covering 1/3 of the circle. The index i denotes a Low, Middle or High average
income regions. Healthcare is supplied by three hospitals, each in each region, where the
hospital in region i is located at s;. Assuming that each hospital is located at the center of
its region, the residents of region i are located in the line segment [s; — 1/6,s; + 1/6]. Each
patient consumes one unit of healthcare from the most preferred hospital. The model
assumes public provision of healthcare with general income taxation funding and free
consumption.

If the patient receives treatment in their local region, we define the net utility of a
patient located in z receiving treatment from hospital in region i as:

Ul(z,s;) =v+bgq; —tlz—s;| + u(A7) (1)

where v in the patient’s gross utility of being treated (v > 0). g; is the quality offered
by the hospital in region i, gq; > q, with q representing the lowest possible quality the
hospitals can provide without being charged with malpractice (for simplicity it is set to

%In fact, Brekke et al. (2014) develop an Hotelling model with two regions that differ in healthcare tech-
nology, where regions with more efficient technology supply higher healthcare quality, attracting patients
from neighboring regions with less-efficient technology. However, the restriction of incorporating two re-
gions prevents form considering a case where a region can be both importing and exporting patients as
opposed to Brekke et al. (2016) (whom incorporate a three-region specification). In addition, the frame-
work used in Brekke et al. (2016) allows for extra expenses when patients demand care outside their region,
and allow for heterogeneity in income within regions (with wealthier patients more likely to move).

9



0). b > 0 measures the marginal utility of quality, and ¢ is the marginal disutility of
traveling. The utility function, u(.) of income is strictly concave, while A7 is the net income
of type-x patient in region i. Assuming that patients are heterogeneous in income a* with
x =P,R,i. e., including high-income (Rich) and low-income (Poor) patients, which implies
aR > aP. We include an income tax rate (social security contribution) 7 > 0, set by the

central government.!? Then, the net income of a type-x patient in region i is given by

A7 =a"(1-1) (2)

Additionally, we assume that heterogeneity of residents” income, with the proportion
of high-income residents A; being Ay > Ay, > A; > 0 (High, Middle and Low income
residents). The average gross income in region i is set to:

a = Aak+(1-1))a" (3)

The net utility of a patient located at z, receiving treatment from hospital in a neigh-
boring region j (different from the patient residence region), located at s; is given by

Ul(z,sj) =v+bq;—tlz—sj|+u(A7) - F (4)

Where F are the non-monetary costs of looking for care in a different region. The
model also includes additional costs (7) that patients who get treatment in a different
region must pay (like co-payments or other out-of-pocket expenses), such that the net
income of type-x patient in region i who seeks care in neighboring region j is set by:

;\?:a"(l—r)—n (5)

1

Assuming a patient utility-maximizing choice of hospital, type-x patients traveling
from i to j for treatment are located on a line segment of length max{0, (j);‘j}, where:

1

9% = 5 (0(aj — ) + u(AT) ~u(A}) - F) (6)
Notice that
o7, _ .
;z;’ = (A - u(AT) > 0 f 7> 0 (7)

10Note that we can also allow for an income tax rate set by the government of region i as T;
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with u#/(.) being the first derivative of utility function u(.).

As long as 1t > 0, richer patient have disutility of paying for extra costs and are more
prone to choose cross-border healthcare. The total number of patients traveling from
region i to region j is then given by max{o, ®;;} where

D;j = Aipis + (1= 1)) (8)
Notice that

L=t (9)

0q; oq; 2t

Finally, Brekke et al. (2016) demonstrate that (in equilibrium) the optimal choice of
healthcare quality will be higher in richer regions, in such a way that q;; > q, > q;; with
q; being the optimal quality choice in region i. This creates an incentive for patient mi-
gration from poorer to richer regions.!!

Therefore, in order to analyze patient mobility across regions we rely on OD flows akin
to what is done in international trade and migration models, which are heavily drawn
on gravity model specifications. Thus, we define the following gravity function to be
estimated

E(Y;j) = f(Xi, X}, Gij) (10)

Where E(Y;;) are the expectations of observed flows from i to j; G;; = f(g;;), being g;;
a vector of separation (distance) measures. X; and X; are origin (canton) and destination
(hospital) covariates, respectively. Cantonal environmental variables include measures
that approximate the regional income level and healthcare quality such as per-capita gross
value added (GVApc), population density, cantonal mortality, insured population rate,
and a multidimensional poverty index. In such a way, we can identify the poor regions
that are more likely to push away patients to neighboring (wealthier) regions.

To proxy hospital quality and performance, the literature has usually relied on basic
ratios, such as mortality rate or readmission rates, which in many cases can lead to mixed
results. We go a step forward in this approach and use a value that measures the perfor-
mance of a given hospital, comprising all their inputs and outputs and considering other
environmental variables (respective to the region where each hospital locates) that cap-
tures the pull effect of those hospitals to attract patients. This way, we rely on a single
(robust) measure that can facilitate policy decisions.

I Refer to Brekke et al. (2016) Section 3.2.
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We also need to consider those potential spillover effects that may arrive from migra-
tion flows in our data. If hospitals located in high-income regions are expected to at-
tract poor-income regions’ patients, then we can assume that other regions (neighboring
those that push away patients) may also present outflow of patients, attracted by high-
performing hospitals. Conversely, spillover effects could appear in the receiving regions
as patient flow movements in their hospitals. This question is the core of our empirical
exercise.

4 Methodology

The method used in this study is developed in two stages. First, we need to obtain the
efficiency measures for each hospital, conditional to the environmental variables they face
and can constrain their performance. In the second stage, we develop a spatial interaction
model (based on the conventional gravity specification) to estimate the impact that the
efficiency value has on migration flows, accommodating for potential spillover effects.

4.1 Order-m efficiency estimation

The first stage of our strategy uses a nonparametric order-m efficiency estimation ap-
proach, introduced by Cazals et al. (2002), Daraio and Simar (2005) and Daraio and Simar
(2007b) that relies upon the production theory (Debreu, 1951; Koopmans, 1951).!2 Intro-
ducing the notation used in this paper, we assume a set of y € RY outputs produced by
a set of x € R inputs, the production technology is the set of all feasible input-output
combinations.

\I’:{(x,y)elRqu x can produce y} (11)

The multidimensional nature of public hospitals, with different functions that are dif-
ficult to quantify, plus the impossibility to obtain input and output prices information
makes W impossible to observe. To account for this, we need to estimate W from a ran-
dom sample of production units denoted by X = {(x,y) eRYMi=1,.., n}. Following this
framework, an observed production unit (x;,y;) defines an individual production possibil-
ity set W(x;,y;), which under the free disposability of inputs and outputs can be expressed
as:

W (x;,9:) = {(x,9) € RY| (3 2 pi)x < xif (12)

12We take an output oriented approach, as we expect that patients can perceive —to a certain extent— the
performance of an hospital based on the amount of patients treated.
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Nevertheless, there could be other environmental factors Z € IR” exogenous to the pro-
duction process that could be affecting the production and the distribution of efficiency
scores. In this matter, Cazals et al. (2002), Daraio and Simar (2005) and Daraio and Simar
(2007b) use a probabilistic formulation of the production process to develop a conditional
efficiency approach to account for the environmental variables in the efficiency estima-
tion, conditioning the production process to a given value of Z = z. This conditional
function is given by:

Sy (v |x2)=Prob(Y 29X <x,Z =z) (13)

Representing the probability of a unit operating at level (x,y) being dominated by
other units facing the same environmental conditions z. This way, the conditional output
efficiency can be defined as the Farrell (1957) efficiency measure:

G(x,y | z) = sup{@lSY(lex,z) > 0} (14)

Those points where 6 (x,y | z) =1 are the technically efficient ones and correspond to
the efficiency frontier, while those with 6 (x, Y | z) > 1 are technically inefficient. To obtain

the nonparametric estimators of the conditional frontier 6 (x, Y | z), mitigating the impact
of outliers, we use the order-m frontier (Cazals et al., 2002). The order-m frontier considers
as a benchmark the expectations of the best practice among m peers randomly drawn from
the population of units from which X < x.!3 The procedure is repeated B times resulting
in multiple efficiency measures (/9\,1,1, oo 551), where the final order-m efficiency value is
the sample mean (0,,). This way, the efficiency of a decision making unit (DMU)!#4 can
be compared with m potential DMUs that have a production larger or equal to y. The
conditional order-m output efficiency estimator can be obtained by the computation of
the one-dimensional numerical integral defined as in Daraio and Simar (2007a):

O (x0-%0 | 20) = Jo [1-(1=Syix 2 (upolX < xo, Z = Z,))" |du (15)

The efficient frontier corresponds to the DMUs where 6, (x,y | z) = 1. Notice that the
efficiency values can take a score lower than one. In this case, the hospitals are labeled as
super-efficient, meaning that they exhibit higher levels of outputs than the order-m fron-
tier.

13We fix the value of m = 90, following the approach of Daraio and Simar (2005) for which the decrease
in super-efficient observations(6 (x,y | z) < 1) stabilizes.

14We can call DMU to any unit of analysis, say, individuals, departments, firms, municipalities, or in the
case of this study, hospitals.
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To estimate the conditional order-m model, we need to incorporate smoothing tech-
niques such that in the reference samples of size m units with comparable z-values have
a higher probability of being chosen. Hence, we rely on the estimation of nonparametric
kernel functions to select the reference observations, and a bandwidth parameter & in the
estimated probability function Sy(y|x, z), given by:

by 52) - B0 2

’yl
iz L(x; <x)Kj(2,2;)

(16)

Where Kj(.) represents the kernel function, I(.) is an indicator function, n represent
the number of observations and h is the appropriate bandwidth. Considering that our
environmental variables Z are continuous, we estimate the appropriate bandwidth 4 fol-
lowing Daraio and Simar (2005) and use the k-Nearest Neighbor (k-NN) method.

4.2 Spatial interaction model specification

In the second stage of our strategy we make use of spatial interaction models, which rely
on gravity models to explain OD migrations flows. In the empirical literature, gravity
models have long been one of the most successful approaches, modeling remarkably well
the observed variations in economic interactions across space (Anderson, 2011). Gravity
models have commonly been used to explain OD flows that arise in trade, transportation,
migration, among others. In the regional economics literature, these models are usually
known as spatial interaction models (Sen and Smith, 1995), as the regional interaction
is directly proportional to the product of regional size measures (e.g. regional income
in the case of interregional commodity flows). One advantage of gravity models is that
due to the nature of gravity itself, it does not apply to individuals but to spatial units as
regions, cities or countries.(Lowe and Sen, 1996). This allow us to focus exclusively on
inference about the determinants of patient migration, from the patterns of distribution
of patients, without the need to involve what determines the total supply of medical care
of all destinations or the total demand of patients from all origins.!>

However, a potential drawback for gravity models is that they rely just on a function
of OD distance to account for spatial correlation and ensure cross-section independence
(Balia et al., 2018). These assumptions have been challenged by many authors. Porojan
(2001) and Lee and Pace (2005) find evidence of spatial dependence in the residuals of
international trade and retail sales flows, respectively; while LeSage and Pace (2008, 2009)
point out that the assumption of independence among observations might be difficult
to defend, as OD flows are fundamentally spatial in nature. The explicit consideration
of flow data correlation due to the spatial configuration of the units involved has been
drawing much attention in the literature as the so-called network autocorrelation (Patuelli

5This property is also known as “modularity” in trade models developed by Anderson and Van Wincoop
(2003).
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and Arbia, 2016).

To embed spatial dependence in a spatial interaction setting, LeSage and Pace (2008)
consider spatial spillovers at three dimensions: origin-based, destination-based, and origin-
destination based. Using this definition of spatial dependence means that we need to model
spatial dependence for flows of patients as a spatial autoregressive specification, accom-
modating endogenous interactions. This definition will allow us to define spatial spillover
effects to hospitals neighboring the destination hospital in the flow of patients.

Additionally, we can accommodate the model for exogenous interactions in a Spatial
Durbin Model (SDM) representing a situation where local spillovers arise from changes
in the characteristics of neighboring hospitals and environmental features of neighboring
regions (cantons). The exogenous interactions can be modeled by including the spatially
lagged covariates in the econometric specification (along with the spatial lag of the en-
dogenous variable). If statistically significant, the omission of these interactions can lead
to problems of omitted variable bias (LeSage and Fischer, 2016). We control for this issue:
we begin by defining the model with no spatial interactions (based on the conventional
gravity model) and adjust it for exogenous interaction specifications as in LeSage and Fis-
cher (2016),'® and, then, we move to its SDM extension as illustrated in LeSage and Pace
(2008) and Laurent et al. (2019).7

4.3 Spatial interaction model

Form equation (10), we begin by setting a Y matrix of patients’ migration flows, whose
columns reflect origins (cantons), and rows destinations (hospitals). Let 1, be the number
of geographical observations at the origin and 7, the number of geographical observations
at the destination, then N = n,n;. The n, x n; flow matrix Y can be converted to an N
vector by stacking columns. The flow matrix can be arranged so the i, jth observation
reflects a flow from j to i (y° = vec(Y)), which is labeled origin-centric ordering. Then,
the destination-centric ordering can be obtained by ¥ = vec(Y’) reflecting a flow from
i to j. We can use G to represent the n, x n; matrix of distances between origins and
destinations. Then, g = vec(G) is an N vector of these distances formed by staking the
columns of the OD distance matrix. If we assume a destination-based order, the logged-
transformed gravity regression model would be as follows:!®

16This model specification is commonly referred in the literature as the spatial lag of X (SLX) model
(Halleck Vega and Elhorst, 2015)

7We move in this direction to identify the sources of spatial autocorrelation and avoid model misspeci-
fication and omitted variable bias. Following this sequence, we can determine the significant effect of the
exogenous interactions by means of an SLX, and, then, those of the endogenous interactions with the SDM
model. In such a way, we can select the appropriate framework of analysis that provides the best fit to our
data.

I81f we start with the standard gravity model and apply a log transformation, the resulting model would
be as shown in (17) (Sen and Smith, 1995).
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Y =x lN+X0ﬁ0+Xdﬁd+7g+g (17)

Where p is the N vector of patient migration (logged) flows, that has been obtained
by stacking the columns of the matrix Y; X,, X; represent the Nxk matrices of (logged)
explanatory variables containing the origin and destination characteristics respectively,
which are expected to reflect the regional and hospital factors that sustain patient choice
for medical care; f,, Bs are the associated k x 1 parameter vectors. The scalar parameter y
is the effect of the (logged) distance g, and « is the constant with Iy vector of ones. Finally,
we have an N x 1 vector of disturbances (¢ = vec(E)).

From (17), we consider an SLX interaction model in the following specification:'®

Y = lN +XO/J70+Xdﬂd+WOXO(DO+WdXd(Z)d-l-)/g-i-E (18)

Where W, and W, are conventional (row-normalized) spatial weight matrices for the
origin and destination observations, respectively. It is worth noting that here we do not
account for spatial weights in W based on geographical distances, as other conventional
spatial econometric models. This is because we are considering for OD distances in the
matrix defined as G in the gravity model specification. However, the sole inclusion of a
distance function in the estimation will not allow incorporating the spatial structure into
the model explicitly. We define the W matrix of spatial weights to be a contiguity (row-
normalized) matrix to consider the spatial configuration of the hospitals and regions that
leads to a flow of patient data correlation.?’

The spatial lags of the exogenous variables W,X , and W;X; help explain variations in
flows across dyads coming from changes in the characteristics of the regions neighboring
the origin and hospitals neighboring the destination respectively. 0,, 0; are the parame-
ters associated to W,X, and W;X . In our study, we enrich equation (17) and control for
the spatial lags of distance g, in the following manner:

v =cc Iy + X, B+ Xgfa+ WoX, 00+ WX 04+ yg+WogVo+Wagya+e (19)

Where W;g and W, g explain the variations in flows arising from changes in the dis-
tance of neighboring hospitals in the same canton, and from neighboring cantons respec-
tively. This aligns with the idea that patients will select the hospital to be treated depend-
ing not just on their proximity (to a given hospital), but to the that of their neighbors, as
well. Finally, y; and y, are the parameters corresponding to W;g and W,g.

19We estimate an SLX model in order to test and identify the existence of local spillovers. Their omission
from the econometric estimation could lead to potential problems of omitted variable bias (LeSage and
Fischer, 2016).

20Tn section 4, we will explain the empirical strategy followed in this paper, along with the specifications
for W, and W;.

16



4.4 Spatial Durbin Interaction Model

From equation (17), one can consider that a change at the characteristics of an observation
i can impact inflows or outflows (or both) of other observations connected with element
i which are not explained in (17) (Thomas-Agnan and LeSage, 2014). LeSage and Pace
(2008) suggest that flows across networks can exhibit spatial dependence and propose a
spatial autoregressive extension of the non-spatial model in (17), which can be viewed as
filtering for spatial dependence related to origin and destination.

(IN—po W,)(In—pa Wy)y=ccIn+X, Bo+Xgfaty g+e (20)

Here, (In—po,W,)(In—paW;) is the filter that capture global spillover effects, translated
into origin-based, destination-based, and origin-destination-based dependence.?' As described
by LeSage and Pace (2009), origin-based spatial dependence reflects the notion that forces
leading to flows from any origin to a particular destination may create similar flows from
neighboring origins. Destination-based spatial dependence is related to idea that forces
leading to flows from the origin to a destination may generate similar flows to nearby
destinations. Thus, Origin-destination-based spatial dependence reflect those forces that
create flows from neighbors to the origin to neighbors to the destination. The model (20)
can be further decomposed considering the spatial lags of the explanatory variables into
an SDM as follows:??

V=PaWay+po Woy+pu Wy v+ oc L2 + X, Bo + XgPa + g + WX, 0,+
WaX 04+ Wogvo+ Wagya + € (21)

Then, the spatial lag p; W,y reflects flows from neighbors to each destination observa-
tion in the vector of origin-destination flow to form a linear combination of flows from
neighboring destinations. While p,; captures the strength of destination-based depen-
dence. Similarly, p, W,y reflects a linear combination of flows from regions neighboring
the origin; and p, reflects the strength of origin-based dependence. Hence, p,, W,y forms
a linear combination of flows from neighbors to the origin and flows from neighbors to
the destination, and the parameter p,, represents the strength of this dependence.

Finally, the spatial autoregressive model can be estimated by Maximum Likelihood
(see LeSage and Pace, 2008). LeSage and Pace (2009) also show how to produce Bayesian

2IThe expansion of the filter product ends in the expression Iy—pgW;—p, Wy—puW,,. Where W,, is the
product of the two weight matrices (W,.W;) and reflects the origin-destination-based dependence. The
reader can refer to LeSage and Pace (2008) for a better understanding.

22The selection of the SDM model allow us to test and identify the existence of global spillover effects in
our dataset. It also incorporates local spillover effects modeled as the spatial lags of the covariates, as in the
SLX model. Furthermore, the selection of an SDM model will produce unbiased coefficient estimates when
the source of spatial correlation is unknown (LeSage and Pace, 2009).
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Markov Chain Monte Carlo (MCMC) estimates for the model.?® In this study, we fol-
low the Bayesian approach using the computational methods proposed in Laurent et al.
(2019). Our decision is motivated by the flexibility that Bayesian methods offer to cap-
ture complex spatio-temporal relationships with heterogeneous data. The use of prior
distributions allows for prior constraints in the parameters which reduces the risk of over-
parametrization. In addition, it allow us to accommodate econometric specifications with
more than one spatial weight matrix, adjusting to our model when origins differ from
destinations.

5 Empirical Application

Here, we will define our empirical strategy to understand whether the efficiency perfor-
mance of high-performing hospitals is attracting more patients, and whether this is ac-
companied by higher patient inflows to neighboring hospitals.

In our empirical application, we define an OD patient flow matrix between regions
(origin) and hospitals (destination), which are different units of analysis; this approach
constitutes a different strategy to that used in other interregional studies. In most of the
empirical literature, the OD flows have been measured by accounting for patient migra-
tion from one region to another, making it difficult to analyze the intraregional dynamics
that occur among hospitals within a region; we contribute to the current literature on
interregional patient mobility by accounting for patient migration flows, from which the
origin represents the region and the destination a given hospital in a particular region.
This way we will be able to consider the dynamic of the destination’s neighboring hospi-
tals in the same region.

In this study, we expect to find spatial dependence, embedded in the size of pa-
tient flows from a region to a hospital as well as its neighboring hospitals. Following
the methodology described above, this would mean the presence of destination-based-
dependence spillovers, which in the econometric model means that p; # 0. However,
given the context of analysis were patients travel to just some certain high-performing
hospitals, we can expect that not just the patients from one region travel to a given hos-
pital to be treated, but also patients from neighboring regions. Thus, spillover effects, are
embedded in the flow size from neighboring regions (origin-based-dependence), which
would mean that p, = 0. Finally, the spillovers can also come in the form of flows from re-
gions neighboring the origin to hospitals neighboring the destination (origin-destination-
based-dependence), thus p,#0. We define a contiguity matrix W; where hospitals are
neighbors if they are located in the same canton. Hence, W, defines as neighbor those
cantons that share a border line. The vector of distances g is composed by the euclidean
distances between origins and destinations. On this baisis, we can define the following
model:

23Refer to appendix B for an explanation on LeSage and Pace (2009) MCMC estimation.
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Y = paWay+p,Woy + pp W+ o IN + eqfa+ Xofo+rv8g+ Wded®d+
WOXO(Z)O + Wogyo + deyd +e& (22)

The vector e; contains the robust logged efficiency scores obtained with (15) specific to
every hospital. This measure is estimated by taking into consideration the environmen-
tal conditions that limit the hospital production, so an observed hospital is benchmarked
with a sample of hospitals facing the same external conditions.?* Therefore, it can prop-
erly be used as an indicator that measures the performance of the hospital as a pulling
factor that attracts patients. The matrix X, accounts for economic and demographic re-
gional characteristics that proxy the regional income-level and health conditions, and
impact patient choice to seek treatment in other (developed) regions. We use cantonal
variables such as logged GVApc, logged population density, logged cantonal mortality,
logged unsatisfied basic needs index (NBI),?> and logged insured population rate.?®

A problem that might arise in the application of the model (especially for the regions
that present large inflow of patients) is the presence of large flows of patients in the matrix
of OD flows, relative to smaller (or zero). This would produce the non-normality in flows
and jeopardize the estimations (LeSage and Pace, 2008, 2009; Thomas-Agnan and LeSage,
2014). In our setting, this would be representing an intraregional flow of patients (e.g.
residents of developed regions getting treatment in their local area). To deal with this
problem, LeSage and Fischer (2010) propose to modify the independent variables, by
replacing with zero the values of the independent variables for the intraregional flows.
The intraregional variations will be captured in a new set of explanatory variables X;,
W;X;, with non-zero observation for the intraregional observations as well as adding a
new intercept term, «;. If we allow for c=vec(ly), the new model would be as follows:

Y= PdeY+Po W0y+ pwwwy tciai+ ZN + edﬁd + Xoﬂo + Xiﬁi + Wded@d + WoXo(Z)o"'

WiX0;+yg+Wogyo+ Wygya+e (23)

Note that we cannot interpret f; (nor any other estimated parameter associated with
origin-destination characteristics) as the partial derivative on flows arising from changes
in the destination-efficiency. As pointed out by LeSage and Pace (2009), in the spatial
econometric specification of the interaction model, changes in the kth characteristic of an
observation i will produce changes in flows into the ith observation from other observa-
tions, as well as flows out of the observation i to other observations. Unlike conventional

24The environmental conditions considered are the Gross Value Added (GVA) per-capita and density of
the canton where the hospital is located as well as the occupancy rate of the hospital in the canton.

25The NBI is a multidimensional poverty index, commonly used in Latin American countries (explained
in Section 6)

26Tn order to avoid taking the log of zero, we have added the unity to the dependent and independent
variables as in LeSage and Thomas-Agnan (2015)
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regression models where it leads to changes only in observation i of the dependent vari-
able, v;.

LeSage and Thomas-Agnan (2015) propose scalar summary measures of the impacts
arising from changes in characteristics of the observations that involves averaging the cu-
mulative flow impact associated with changes in all observations, resulting in the so called
origin effects, destination effects, and network effects. Origin and destination effects express
the mean impact on flows arising from changes in the origin and destination characteris-
tics, respectively. In turn, network effects characterize the mean impact of a change in the
characteristics of the origin i on all the flows coming from other origins, different from i
to a destination j.?’

In our setting we have n, # n; and different covariates’ matrices for origins (X,) and
destinations (X;), which requires to follow the computational inefficient method to calcu-
late the the scalar marginal effects. This means that we need to calculate changes in each
of the n, and n, elements of the vectors X, and X, respectively, to obtain scalar summary
measures of the impact of these changes on the patient flows.

6 Data and Variables

To estimate (23) we collect data for the year of 2014. Hospital information comes from
the Annual Survey of Hospital Beds and Discharges and the Survey of Health Activities
and Resources provided by the National Institute of Statistics and Census (INEC, by the
acronyms in Spanish). We excluded the psychiatric, dermatologic and geriatric hospi-
tals, and took out from the sample those that presented irregularities in the data.?® As
described above, the migration flow matrix considers the rows to be the hospital desti-
nation, while the columns are the cantons (regions) of origin. We retrieved a sample of
176 destination hospitals and 106 cantons of origin. By vectorizing the flow matrix, using
the destination-centric arrangement described in Section 4, we obtain a vector of 18.656
observations.

The cantonal economic and demographic variables were retrieved from the Ecuado-
rian Central Bank (BCE, by the acronyms in Spanish) and INEC’s public statistics, re-
spectively. While the poverty and population insurance data was collected from the 2010
national census. The description for all the variables is presented in appendix C.

27Refer to Thomas-Agnan and LeSage (2014) and LeSage and Thomas-Agnan (2015) for a deeper under-
standing on the scalar summary measures.

28We excluded psychiatric, dermatologic and geriatric hospitals as they focus on specific illness and pa-
tients that require different treatments that could bias the efficiency values. For example, psychiatric hos-
pitals might require inpatients to stay for long periods of time, wherein our analysis would reflect it as a
criteria for less efficiency.
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6.1 Variables for the conditional order-m efficiency measurement

For the selection of input and output variables to estimate model (15) in the first stage
of our strategy, we followed previous literature on efficiency measurement. A complete
review of the literature is offered in Hollingsworth (2008); O’Neill et al. (2008) and Cantor
and Poh (2018).

Regarding the input variables, we use the number of beds, the medical equipment, and
infrastructure, widely used as a proxy for hospital size and capital investment (O’Neill
et al., 2008). To proxy labor costs, clinical staff is usually included (Hollingsworth, 2003,
2008). To that end, we introduce the number of physicians and healthcare professionals
beyond the number of physicians of the hospital.

As for the outputs we use the hospital’s patient discharged to measure the final pro-
duction of health. To control for the heterogeneity of the disease-case attended, we build a
case-mix.This index is used in the healthcare efficiency measurement literature to control
for the severity of the cases treated, as not all the patients can be treated with the same
amount of resources, nor all of them have the means to treat the most severe cases (Cantor
and Poh, 2018). We follow Piedra-Pefia (2020) and Piedra-Pefia and Prior (2020), and use
the case-mix index proposed by Herr (2008), which relies on the assumption of a positive
correlation between length of stay and the severity of illness. The index is built according
to the three-digit International Statistical Classification of Diseases and Related Health
Problems (ICD-10).

In addition, the Survey of Health Activities and Resources in 2014 provides informa-
tion on the total number of morbidity and emergency consults, and the total number
emergencies treated, commonly used in the literature to measure the activity of hospitals
(Cantor and Poh, 2018).

Furthermore, we tried to account for a quality hospital related output with the hospital
survival rate for patients after 48 hours of admission. The intuition is that the mortality
rate after 48 hours has a stronger relationship with the resolutive capacity of the hospital
employees. Therefore, it has a higher correlation with the quality of the treatment pro-
vided. Hospital mortality rates have been usually employed to proxy the quality of the
hospital treatment (Hollingsworth, 2008), but in healthcare efficiency measurement we
need to measure the outputs as health gains of the patients; which is why the survival rate
(1-mortality rate) is usually employed.?’

In this respect, other hospital indicators such as readmission rates, the level of special-
ization (Gravelle et al., 2014; Longo et al., 2017) or the nosocomial infections (Prior, 2006)
have been usually employed to proxy hospital quality. However, we do not account for
this information in our dataset, which is one of the limitations that we faced in our study.

290ne additional advantage of the conditional order-m estimation model is that we can use output vari-
ables expressed both in percentage and volume and obtain robust efficiency measures. If the same structure
was applied to classical methods (such as DEA) the results would be inconsistent (Olesen et al., 2015).
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Finally, we consider three environmental variables that can potentially affect the hos-
pital performance: the cantonal GVApc, cantonal population density and the hospital oc-
cupancy rate. The former two explain the territorial inequalities in the country, which
have a big influence in their regional development (Mendieta Mufioz and Pontarollo,
2016). Those developed regions present a high concentration of hospitals and health re-
sources, that influence healthcare performance. Piedra-Pefia and Prior (2020) find empir-
ical evidence that these developed regions do not just concentrate better-endowed hospi-
tals, but these hospitals are also the best performers in terms of efficiency. The empirical
evidence of the effect of GVApc and population density on healthcare efficiency is sup-
ported by Halkos and Tzeremes (2011).

The third environmental variable is commonly used to proxy the utilization of poten-
tial capacity in a hospital and determine whether it is adjusting their working staff to the
increase of treated patients in the short-run (Herwartz and Strumann, 2012, 2014). The
idea behind is that hospitals with low occupancy rate may be signaling an oversized staff
and capacity, unlikely to meet the demand for medical treatment efficiently (Piedra-Pefia,
2020). The occupancy rate has been used as an environmental variable for conditional
order-m approaches in recent work by Mastromarco et al. (2019). Furthermore, Piedra-
Pena (2020) provide empirical evidence of its positive direct and spillover effects on hos-
pital’s efficiency.

Table 1 presents the descriptive statistics of the variables for the conditional order-m
efficiency estimation. Overall, we can distinguish a big gap of hospital’s inputs and out-
puts (as well as in cantonal variables), observed in the difference of the minimum and
maximum values that describes the marked discrepancies across hospitals and cantons.
In fact, Piedra-Pefia (2020) emphasize that those hospitals that present a high amount of
resources and treated population settle in regions densely populated and with high pro-
duction (measured by the GVA). This initial evidence supports our hypothesis that patient
movement is likely to be directed to those developed regions, where more healthcare re-
sources are concentrated.

6.2 Variables for the Spatial Durbin Interaction Model

First, at the hospital level, we use the efficiency scores obtained in the first stage as a
variable of hospital performance. The variable proxies the pulling effect for a hospital to
attract patients (e; in equation (23)). A negative sign of the efficiency variable destination
effect means a good performance, attracting patients from other cantons.3? The rationale
could be twofold. On the one side, patients identify —to a certain extent— those best per-
forming hospitals and prefer to travel to other canton (potentially the developed ones) to
get treatment in what they perceive as the best facility. So, the efficiency performance of
a hospital would also be explaining the quality perception of the patient. On the other

30Recall that hospitals with efficiency values higher than one are technically inefficient hospitals. Hence,
anegative relationship with patient flows would mean that the best-performers are attracting more patients.

22



Table 1: Conditional order-m variables’ summary statistics

Mean Median SD Min Max
Outputs
Discharges (weighted) 2262.23  1059.03 2750.83 79.1 16262.77
Morbidity consults 41210.26 21923.5 64187.04 168 529420
Emergencies consults 43969.8 24942 58596.16 70 407485
Survival rate 0.98 0.99 0.03 0.79 1
Inputs
Physicians 71.49 30 107.39 4 786
Beds 85.87 32 126.14 6 856
Medical personnel 137.57 52 212.58 3 1453
Equipment 96.02 50.5 112.31 3 776
Environmental variables
Per-capita GVA 3081.89 2653.4 1699.52 646.32 6388.77
Density 288.02 129.32  502.56 0.4 4271.17
Occupancy rate 59.05 56.72 26.23 0.46 154.8

Source: The authors, based on information from INEC and BCE.

side, this inflow of patients can also be explained by referrals from low-tech hospitals that
might not have enough resources to treat a complex pathology. Unfortunately, we do not
account with information regarding hospital referrals in our dataset to test this hypothe-
sis. However, in both hypotheses, the significative effect of the efficiency performance is
helping to explain the patient interregional mobility and the quality perception either by
the patient or the hospital that is referring the patient (or both).

We proxy the cantonal level variables (X, in (23)) that will impact on patients’ deci-
sion to look for medical treatment with five variables. First, we use GVApc and population
density to proxy the level of development of the region. As in the first stage, these vari-
ables can explain the regional heterogeneity that characterizes the country. Hence, it is
very likely that the most important hospitals where population and economic activities
are more concentrated are located in developed cantons, and, over time, this can foster
quality differentials (Balia et al., 2020). In Ecuador, this statement has been empirically
demonstrated by Piedra-Pefia (2020) and Piedra-Pena and Prior (2020). The use of these
variables to explain patient mobility has been extensively applied in the literature (see for
example Cantarero, 2006; Fabbri and Robone, 2010). We use cantonal mortality (per 1000
individuals) and the insured population rate to proxy the healthcare conditions in the re-
gion, and control for the accessibility to medical treatment. The intuition is that higher
mortality rates would be associated with poorer healthcare conditions in the canton.

Finally, we control for the poverty level in the canton by introducing the unsatisfied
basic needs index (NBI). The index was developed by The Economic Commission for Latin
America and the Caribbean (ECLAC / CEPAL by their Spanish acronyms), and has been
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Table 2: Spatial interaction model variables’ summary statistics

Mean SD Min Max
Order-m conditional efficiency 1.3207 0.7192 0.7264  5.7265
Per-capita GVA 3081.8877 1699.5163 646.315 6388.7741
Density 288.016 502.5621  0.3954 4271.174
Cantonal mortality 3.9611 1.206 0.5902  5.8391
NBI 0.6395 0.1832 0.297 0.987
Insured rate 0.2291 0.0878 0.0519  0.4844

Source: The authors, based on information from INEC and BCE.

widely applied in Latin American countries since the 1980s as a multidimensional mea-
surement of poverty (CEPAL, 2007). Considering that poverty is a complex and multidi-
mensional phenomenon, the NBI evaluates different dimensions of deprivation of goods
and services required to the satisfaction of basic needs. In Ecuador, these dimensions com-
prehend economic capacity, basic education access, housing access, basic services access,
and overcrowding. As stated in equation (7), richer patients are more prone to choose
cross-border healthcare, we try to proxy this dimension of regional patient heterogeneity
with the poverty index.

Table 2 presents the descriptive statistics of the variables used in the SDM model.
Additionally, Figure 1 shows the distributions of hospitals by efficiency performance (e,
in (23)) at the top panel (a), and the migration flow dynamic of the sample (y in (23)) at
the bottom panel (b). Panel a) of the Figure shows the most efficienct hospitals (that is, the
hospitals with an efficiency value lower than 1) to be mainly concentrated in two of the
most developed regions of Ecuador, where most of the healthcare resources are located.3!

The panel b) of Figure 1 shows the patient flows from origin to destination, organized
by intervals. We observe that there is a clear dynamic of patients traveling to the regions
where the best performing hospitals concentrate. We can appreciate that most of the pa-
tient inflow is coming from neighboring cantons, which is a first signal of potential spatial
autocorrelation in the migration flow. Hence, we use spatial interaction models that allow
to disentangle the spillover effects of this migration dyad. Our empirical strategy begins
by running the spatial interaction model, specified in (17), (18) and (19) to determine the
econometric specification that better fits our data.

3l These hospitals concentrate mainly in Quito and Guayaquil which are the two bigger and most devel-
oped cantons in Ecuador (Mendieta Mufioz and Pontarollo, 2016).

24



Figure 1: Hospital efficiency and patient migration flows
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7 Results and discussion

Table 3 presents the estimation results of the interaction model (17), adjusting for the
intraregional patient flows in column (1). Column (2) incorporates the SLX interaction
model (18); while column (3) includes the spatial lags of the distance variable g, of equa-
tion (19). As the traditional gravity model posits, the flows are inversely proportional
to distances, as shown by the negative and statistically significant effect of distance (g).
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The estimated parameters are statistically different from zero. Although, as assessed in
Section 4, they should not be interpreted as partial derivatives (LeSage and Fischer, 2016).

We can additionally use the estimates in Table 3 to emphasize that a non-spatial speci-
fication could suffer from omitted variable bias if the exogenous effects are not accounted
for. This is endorsed by the fact that all the spatial lagged variables are significantly dif-
ferent from zero. The selection of the spatial specification in column (3) is endorsed by
the Akaike and Bayes selection criteria —as well as the LR test and the R squared- as the
best specification. Hereinafter, we will refer to this model as the baseline model.3% 33

Table 3: Spatial interaction model

(1) (2) (3)
Constant 7.089%¢ 6.462°°* 6.398**
(0.27) (0.43) (0.43)
a; -7.148*%* -6.535** -5.51**
(2.58) (2.58) (2.61)
log conditional efficiency -0.256** -0.235%** -0.234*%¢
(0.03) (0.03) (0.03)
log GVApc 0.309%** 0.206*** 0.207***
(0.02) (0.02) (0.02)
log density -0.015%* 0.041*** 0.045%**
(0.01) (0.01) (0.01)
log cantonal mortality -0.099%** 0.098*** 0.11%**
(0.03) (0.04) (0.04)
log nbi 0.327** 0.043 0.1
(0.14) (0.17) (0.17)
log insured 1.883*** 0.886*** 0.937%**
(0.19) (0.23) (0.23)
log conditional efficiency_i -0.913%** -0.9171¢* -0.918%**
(0.33) (0.33) (0.33)
log GVApc_i 1.245%+ 1.271%* 1.221%+
(0.24) (0.24) (0.24)
log density_i -0.095 -0.103 -0.098
(0.06) (0.06) (0.06)
log cantonal mortality_i 1.448*** 1.475%%¢ 1.404**
(0.34) (0.33) (0.34)
log nbi_i 5.137%%* 5.2527%%% 4.76***
(1.58) (1.57) (1.57)
log insured_i 5.909*** 6.019** 5.995%**

32We test the the absence of spatial autocorrelation for the OD, patient migration flow, using the Moran
test with both W; and W, spatial weight matrices. The tests reject the null of absence of spatial autocorre-
lation with Moran’s I values of 0.5055 and 0.036, respectively.

33We tested the direction of the causality between migration flows and hospital efficiency by means of
Granger (1969) causality test. The test rejects the null hypothesis of non-causality.
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Table 3 (continued)

(1)

(2)

(3)

(1.99) (1.98) (1.98)
W, log conditional efficiency -0.119%¢* -0.115%*
(0.04) (0.04)
W, log GVApc 0.217%** 0.224***
(0.03) (0.03)
W, log density -0.089*** -0.093***
(0.01) (0.01)
W, log cantonal mortality -0.435%** -0.431¢*
(0.05) (0.05)
W, log nbi 1.395%** 1.352%**
(0.21) (0.21)
W, log insured 1.48%** 1.433%**
(0.27) (0.27)
log g -0.74104 -0.771% -0.659**
(0.01) (0.01) (0.06)
W, log g 0.085*
(0.05)
W, log g -0.26+%
(0.05)
N 18656 18656 18656
Adj R-squared 0.4484 0.4572 0.4578
LogLik -25844.97 -25692.14 -25681.66
AIC 51721.9358 51428.2796 51411.3173
BIC 51847.2786 51600.6259 51599.3315

Note: Dependent variable is the vector of (logged) migration flows. Estimations obtained by ML. Standard errors
in parenthesis.*** p < 0.01, ** p < 0.05, * p <0.1.
Source: The authors.

Once we have identified our baseline model, we estimate the SDM model as in equa-
tion (23). The Bayesian MCMC estimates based on 1000 draws are presented in Table 4.
Lower and upper 0.05 and 0.95 credible intervals are reported, as well as the t-statistic.

The estimates show not just a high level of destination-based spatial dependence, but
origin-based and origin-destination-based spatial dependence as well. The coefficients
pq and p, are 0.31 and 0.53, respectively. The estimated parameter p,, = —p;p, is -0.11
and statistically different from zero. The 95 percent intervals suggest a small standard
deviation and hence, big precision on the estimation.

These results provide evidence of the existence of spillover effects arriving from pa-
tient migration flows. Destination-based spatial dependence posits that flows coming
from a given canton of origin to a destination hospital creates similar flows to neighbor-
ing hospitals (located in the same destination canton). In addition, origin-based spatial
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dependence shows that flows from any origin canton to a destination hospital creates
similar flows from neighboring origins. Finally, origin-destination spatial dependence ev-
idence that larger outflows from cantons neighboring the origin generate larger inflows to
hospitals neighboring the destination. These findings point out the existence of spillovers
steaming not just among cantons, but within cantons.

As noted by Thomas-Agnan and LeSage (2014) and LeSage and Thomas-Agnan (2015),
the coefficients and t-statistics reported in Table 4 should not be interpreted as reflecting
the partial derivative effects of changes in origin and destination characteristics. In turn,
we need to calculate, origin, destination, and network summary measures to draw valid
inferences on how changes in origin and destination characteristics impact the decision
of patient migration flows.

In this respect, Table 5 reports the scalar summary effects for the model (23). In terms
of hospital efficiency, the estimates show a significant expected negative effect. The in-
crease in efficiency of an observed hospital leads to higher inflow of patients. Specifically,
a 1 percent increase in efficiency on an average hospital would lead to a 0.3 percent in-
crease in patient inflows.>*As mentioned, these results are supporting the hypothesis that
patients are selecting those hospitals that present a higher performance as more qual-
ified. Higher efficiency performance seems to be working as a pull factor that attracts
patients from neighboring regions. This effect can also be arising from patient referrals
from other (low-performer) hospitals, which do not account with the necessary resources
to treat complex pathologies. The information available in our dataset does not allow us
to disentangle the size of these effects. We leave this question to be explored in future
research.

Interestingly, hospital efficiency is also displaying a significative and negative network
effect. This means that 1 percent increase in the efficiency of a given hospital is increas-
ing the patient movements going to neighboring hospitals —different from their initially
preferred hospital of destination—in 0.15 percent. These finding goes in line with Piedra-
Pefia (2020), suggesting a competitive effect where higher efficiency in neighboring hos-
pitals increase patient inflows.

Changes in the characteristics of the canton of origin provide additional information
on the patient travel decision. For example, the positive and significant impact of GVApc
could be measuring the (ceteris paribus) wealth effect of the origin. If the GVApc of the
canton of origin increased, patients would have higher resources to devote to traveling
costs to get medical treatment in other regions, such to create a pushing effect in that
region. The positive and significant network effects of GVApc point to an increase in out-
flows from cantons neighboring the origin, when their wealth increases. This is support-
ing our assumption that regional income level is going to be a determinant of cross-border
patient migration, as stated in Section 3.

Furthermore, densely populated cantons with high mortality rates are expected to

34Note that values bigger than 1 are inefficient.
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Table 4: Spatial durbin interaction model

Mean Lower 0.05 Upper 0.95 t-stat

Constant 0.5591 -0.0081 1.1639 1.6045
a; -1.2612 -4.7121 2.0721 -0.6144
log conditional efficiency -0.1248  -0.1677 -0.0821 -4.7200
log GVApc 0.1351 0.1051 0.1643 7.5366
log density 0.0413 0.0296 0.0521 6.0521
log cantonal mortality 0.1149 0.0683 0.1603 4.0281
log nbi -0.1674  -0.3791 0.0560 -1.2582
log insured 0.3172 0.0154 0.6082 1.7675
log conditional efficiency_i -0.8186  -1.2245 -0.4078 -3.2243
log GVApc.i 0.4082 0.1022 0.7233 2.1771
log density_i -0.0593  -0.1415 0.0225 -1.1901
log cantonal mortality_i 0.1978 -0.2413 0.6655 0.7218
log nbi_i 4.5273 2.3865 6.6296 3.5703
log insured._i 3.1162 0.4836 5.6679 1.9522
W, log conditional efficiency -0.0251  -0.0731 0.0267 -0.8293
W, log GVApc -0.0332  -0.0787 0.0096 -1.2351
W, log density -0.0565  -0.0727 -0.0397 -5.3821
W, log cantonal mortality -0.2131  -0.2728 -0.1491 -5.5530
W, log nbi 0.7526 0.4872 1.0264 4.7012
W, log insured -0.3580  -0.6936 -0.0311 -1.6957
W, log ¢ 0.5162 0.4523 0.5792 13.3431
W, log g 0.5477 0.4866 0.6114 14.4044
log g -1.1637 -1.2472 -1.0820 -22.8236
[oF 0.3068 0.2967 0.3172 29.2126
Po 0.5346 0.5283 0.5442 31.4697
Ow -0.1085  -0.1245 -0.1004 -4.0614

Note: Dependent variable is the vector of (logged) migration flows. Bayesian MCMC estimates based on
1000 draws. N=18656 Source: The authors
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Table 5: Scalar summary effects

Mean t-value

Destination Effects
log conditional efficiency -0.3015 -4.9594

Origin Effects

log GVApc 0.2185  6.7937
log density 0.0473  5.1626
log cantonal mortality 0.1155  2.4933
log nbi 0.0558  0.2817
log insured 0.4012  1.4762

Network effects
log conditional efficiency -0.1529 -2.5719

log GVApc 0.1725  1.8814
log density -0.1026  -3.9597
log cantonal mortality -0.4405 -3.9308
log nbi 2.0840  4.4193
log insured -0.5705 -0.9851

Note: Dependent variable is the vector of (logged) migration flows.
Bayesian MCMC estimates based on 1000 draws. N=18656

Source: The authors

push away patients, as expected. However, it is interesting to observe a negative network
effect for both these variables. An explanation to the latter could be that high density and
mortality in a neighboring canton reduces the incentives of patients to seek treatment in
other regions different from their origin.

Before drawing any conclusions, we need to test the robustness of our results. Thus,
we provide a robustness analysis in Section 8.

8 Robustness analysis

In order to check the robustness of our results, we carried out several tests. First, we
want to test our efficiency estimator. In so doing, we perform a sensitivity analysis of
the order-m estimation to different m values of peers randomly drawn from the popula-
tion. We simulate different scenarios of estimated efficiencies, with m = 1,...,150, and test
the difference in distributions between m and m + 1 (H, : efficiency m = efficiency m + 1)
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by means of Simar and Zelenyuk (2006) adaptation of the Li test for unknown distribu-
tions.3> Cazals et al. (2002) show that, when m increases and converges to oo, the order-m
estimator converge to the full frontier. Hence, for a finite m the frontier will not embed all
the data points and so is much more robust than other classic non-parametric approaches
(like Data Envelopment Analysis of Free Disposal Hull) to outliers. The results show a
convergence after m = 30 (depicted in Figure 2 appendix D) where H, cannot be rejected.
Therefore, we can confirm that there are no significant differences within the range of the
m value selected.3®

A second concern is the validity of environmental variables included in the condi-
tional order-m estimation. We rely on the fact that the level of development of a canton
has an external effect on the efficiency performance of hospitals located within. So, best
performers would be located in developed regions and would attract more patients. To
find out whether environmental variables have a significative effect on the production of
healthcare, we follow the procedure described in Daraio and Simar (2005) and Daraio
and Simar (2007b) and regress the ratio R of estimated conditional and unconditional ef-
8, (xy]2)

Om(x,9)
smoothed regression. As stated by Daraio and Simar (2005), in an output oriented frame-

work, an increasing regression means a favorable Z: the environmental variable acts as a
sort of “extra input” favorable for the production process.>” Conversely, an unfavorable Z
would be observed with a decreasing regression, where the environmental variable is —in
a certain sense— penalizing the production of the outputs of interest. Then, we test the
significance of each variable.

ficiency scores (R = ) on the environmental variables Z, using a non-parametric

The results show a significant and favorable impact of GVApc (p-value = 0.004) and
occupancy rate (p-value = 2e-16) on R (Figure 4 of appendix D) at the 99% confidence
level.®® This validates our hypothesis that hospital performance is being affected by the
regional income levels, and this effect is being captured with the conditional model.3°

Another point to test is the endogeneity of the efficiency value. As a random variable,
there is the possibility that it is correlated with the error term. To test the hypothesis of no
endogeneity (Hj : true correlation equal to 0) we perform a t test between the efficiency
score and the error terms after running equation (19). The test confirm that we do not

35The Li (1996) method relies on kernel smoothing to non-parametrically estimate two density func-
tions. Simar and Zelenyuk (2006) modify this method in order to test efficiency values estimated by non-
parametric approaches and provide consistent bootstrap estimates of the p values of the Li test.

36Recall that we have fixed m = 90.

37The value of gm(x,y | z) would be smaller (more efficient) than 5,,,(3(,})) for small values of Z than for

large values. Hence, R will increase with Z, on average.

38 Although density does not seem to have a significant effect on R, the results do not vary when we take
it off the efficiency estimation.

3%Note that occupancy rate also presents a significant favorable effect on efficiency, which is signaling
that hospitals are making a better use of their resources and capacity to treat incoming patients as found by
Piedra-Peria (2020)
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suffer from endogeneity in the efficiency term (p-value = 1).40

Regarding the spatial econometric specification, we tested the robustness of the es-
timations from equation (23) with a new efficiency value. In so doing, we calculate the
efficiency value of equation (15) taking out the emergency consults from the outputs. We
consider this alternative estimation of hospital efficiency given that the patients do not
usually have a decision over the hospital where they get treatment in these cases. The
destination and network marginal effects of the hospital efficiency are significant and
comparable (-0.303 and -0.147, respectively).

In addition, we examine whether the results are sensitive to alternative specifications
of the spatial weight matrix W;. Rather than considering the neighboring dimension for
hospitals that are located in the same canton, we chose to consider those hospitals lo-
cated within time travel distance radius. Thus, we define W;; to be the inverse of the
shortest time travel distance by car between any pair of hospitals.#!In addition, we con-
sider remoteness between hospitals by introducing the inverse of the squared travel time

distance for the weight matrix, Wdzt, so closer hospitals receive a higher weight.

Table 6 show the destination and network effects estimated for our variable of interest,
as well as the parameters py , p, and p,, corresponding to each weight matrix after running
equation (23). The results for the destination effects are robust and comparable. The net-
work effects are not statistically significant with Wdzt, which suggest that the competition
effect (in efficiency) among hospitals is diminishing for those that locate further apart.
Regarding the spillover effects on migration flows, the results are robust and comparable
in size for origin and destination spillovers (p,, p4, respectively), but loose significance for
origin-destination spillovers. The intuition behind could be associated with the proxim-
ity of hospitals within the region. By using W;, and W3,, we consider a given hospital
as neighbor if it is located within a radius, so origin-destination spatial spillover effects
do not seem to be happening to those immediate neighbor hospitals but rather on those

located throughout the region (when we use W;).

40We performed the same test for all explanatory variables, with comparable results to those of efficiency.
4 Defining the spatial weight matrix using a measure of distance between spatial units has commonly
been used in the literature when the data covers healthcare providers (Tosetti et al., 2018)
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Table 6: Scalar summary effects, using W;; and Wdzt

7
Wdt Wdt
Mean t stat Mean t stat

-0.2139 -3.4104 -0.1798 -2.9476

log conditional efficiency
(Destination Eff.)

log conditional efficiency o yoc) 53507 04017  -1.5881

(Network Eff.)

0d 0.4757 15.7229 0.4308 5.9839
Oo 0.3057 3.9444 0.5159 17.8886
Pw 0.0010 0.0107 -0.1078 -1.1939

Note: Dependent variable is the vector of (logged) migration flows. Bayesian MCMC
estimates based on 1000 draws. N=18656
Source: The authors

Another dimension to check the robustness of the results is by considering the spec-
trum of treated diseases. There is the possibility that the pulling effect could be mainly
driven by the presence of specialized hospitals versus other basic hospitals that provide
another scope of treatments. Thus, we split the sample in two different subgroups by dis-
tinguishing between basic and specialized hospitals (this latter include chronic and acute
hospitals).*?

Table 7 present the scalar summary effects for efficiency and the parameters p,, p, and
py for each hospital type. It is not surprising to note that the destination effect for basic
hospitals disappears, suggesting that the pulling effect of hospital efficiency performance
is mainly being captured by specialized hospitals, because the magnitude of the estima-
tion is larger. As basic hospitals spread across the country, what seems to be driving peo-
ple to travel to high-income regions is the performance of specialized medical institutions,
which are more concentrated in those cantons (see Figure 4 of appendix E). However, high
performance of an average basic hospital is not enough to attract interregional patients
as they are prone to receive medical attention in their local hospital to treat a common
disease. Instead, in the case of specific or severe illnesses, patients will select a particular
hospital on the basis of the quality of the treatment they perceive they will attain over
there, which is being captured by our efficiency variable. Nevertheless, spillover effects
are still statistically robust and comparable in both the cases, which means that both ar-
rangements are valid to guarantee patient mobility across the territory. One explanation
endorsing these results (particularly for basic hospitals) is that even though the increase
in efficiency of a given hospital is not enough to attract intraregional patients, those hos-
pitals are taking advantage of patient inflows, initially attracted by other hospitals (most

#21n our database, acute hospitals embed infectious hospitals, obstetric-gynecological hospitals, pediatric
hospitals, general hospitals that treat acute diseases and other hospitals of specialization. Whilst chronic
hospitals embed oncology and pneumology hospitals
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likely neighbor specialized hospitals).*3

Table 7: Scalar summary effects by hospital type

Basic (N=7743) Specialized ( N=2610)
Mean t stat Mean t stat

log conditional efficiency
(Destination Eff.)
log conditional efficiency 0.3621

-0.0077 -0.1669 -0.8085 -3.9508

6.2390 -0.7748 -5.2670

(Network Eff.)

0d 0.1530 19.2537 0.3453 15.6936
Po 0.2692 31.9435 0.4202 12.1845
Ow -0.0318 -3.8361 -0.1222 -5.5952

Note: Dependent variable is the vector of (logged) migration flows. Bayesian MCMC
estimates based on 1000 draws.
Source: The authors

Considering that the efficiency performance of specialized hospitals seems to be the
main determinant to attract interregional patients, one could doubt that patients choose
to travel because they want to receive a better treatment than what they could obtain
in their local hospital, but because there are no other alternatives to treat their disease.
Hence, the decision to travel may be forced by the complexity of the treatment, which is
not available in the hospital of their respective region. To corroborate this, we provide
a frequency table of the top five morbidity causes of interregional patients (i.e., patients
that get medical attention in a hospital located in a canton different from where they re-
side) treated in specialized hospitals, in Appendix F (Table 9). We observe that the main
causes of (interregional) patient migration are mainly related to pregnancy (with more
than 6% of treated patients). The intuition behind lead us to think that, being pregnancy-
related treatments something that is usually planned and monitored, and could be carried
out in any hospital, patients are choosing to incur in travel expenses to receive the best
treatment possible in their closest best-performing hospitals (located in developed can-
tons).** This is backed up in Table 10 of Appendix F, where we present the amount of
patients treated in hospitals located at the three high-income cantons in Ecuador (Quito,
Guayaquil and Cuenca), divided by the patient’s province of residence.*> The table shows
that, for example, in Cuenca the majority of interregional patients belong to neighboring
cantons located in the same province (and that holds for Quito and Guayaquil).

#3For example, patients traveling to get specialized medical attention could incur in additional costs that
are not covered by their insurance, but similar treatments could be offered in alternative public hospitals.
Other scenario could imply that patients would seek medical attention in adjacent hospitals if the waiting
time for specialized ones is long enough.

#4Note that other morbidity causes relate to appendicitis or calculus of the gallbladder, which are not as
complex as cancer, for example.

45Remind that, in Ecuador, the provinces are the first-level administrative division. The cantons of Quito,
Guayaquil and Cuenca belong to the provinces of Pichincha, Guayas and Azuay, respectively.
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Furthermore, we plot two figures in Appendix F. Figure 5 describes the demographics
(available in our dataset) of the patients with the top five morbidity causes, while Figure 6
describes the public entity embedding the public hospital (MSP, Social Security hospitals,
and other public hospitals patronized by their respective municipality). Unfortunately,
our database does not account with information about the patient’s income level, but it
includes their self-perceived ethnicity which can be used to proxy this variable.*® Figure 5
shows that more than 60% of the interregional patients describe themselves as mixed-
race. In addition, Figure 6 shows that mixed-race and white patients are the ones that
make use of the social security institutions. These former are the ones that account with
a formal job, hence, having access to social security services. More than 90% of indige-
nous and afro-ecuadorian (interregional) patients get medical attention in MSP hospitals
(which offer free healthcare). The descriptives support our theory that wealthier patients
are more prone to seek medical attention outside their area of residence. Also, they seem
to be choosing to go beyond the regional borders to treat their pathologies, rather than
being forced by the complexity of their disease.

Our results open up an important discussion in terms of policy implications. Hospital
efficiency performance seems to be capturing a deal of quality perception by public hos-
pital patients that cannot be neglected. In this respect, policy makers need to take into
consideration that the effect of an unexpected healthcare reform could entail a broader
spectrum of consequences beyond the ones addressed to those healthcare institutions ini-
tially targeted. For example, new reforms that decrease the barriers to access to more
specialized and sophisticated treatments (only available in specialized hospitals) need to
be well planned and allocated. If the increase of the demand driven by these reforms is
not controlled, they could lead to congestion effects that can impact the performance of
specialized hospitals. Due to spillover effects, neighboring hospitals (including the ba-
sic ones) could experience detrimental consequences,’ leading to a deterioration of the
regional healthcare performance.

So far, Ecuadorian healthcare reforms have been accompanied by an increase of hos-
pital efficiency, and hospitals adapted the spare resources to treat the higher inflow of
patients (Piedra-Pefia, 2020), but those reforms have been mainly focused on offering
general treatment in public hospitals that are abundant and spread around quite homo-
geneously across the country. However, there is a lower supply of specialized hospitals
which are much more territorially concentrated. These findings highlight the importance
to implement tailored regional healthcare policies.

As Brekke et al. (2014) suggest, high-income regions could be benefiting from welfare
improvements, as we found a competition effect in efficiency among hospitals within the
same regions that leads to higher regional performance and quality. However, the welfare

46Mixed-race population is more likely to belong to the middle-income class, while indigenous, afro-
ecuadorian, and other indigenous ethnicities (apart from white) are more likely to belong the low-income
class.

47For example, they could be obliged to attend bigger amount of complex pathologies for which they do
not have the medical resources to treat.
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effects could generate asymmetric effects as low-income regions are not accounting with
high-performing specialized hospitals, and only the patients that move to other regions
benefit from these welfare improvements. Future public investment could be focused on
increasing specialized services for hospital clusters of low-income areas. More supply of
specialized hospitals could attract patients and motivate competition among hospitals to
provide welfare improvements and reduce the quality gap between regions.

9 Conclusions

This study aims to analyze whether the higher efficiency performance of Ecuadorian pub-
lic hospitals is resulting in a higher inflow of interregional patients to a destination hospi-
tal, and whether this is also leading to a higher inflow of patients to neighboring hospitals
within the same region. To determine the effect of efficiency on the patient migration net-
work, we follow an innovative two-stage strategy where the first step is to estimate robust
conditional order-m efficiency values, based on the economic concept of Pareto efficient
allocation and the second step makes use of a spatial Durbin interaction model to estimate
the effect of hospital efficiency in patient migration flows, and separates the spillover ef-
fects in the form of larger inflows of patients for neighboring hospitals. We contribute
to the empirical applied literature by estimating a model that considers different origins
and destinations in the OD dyad, that—to the best of our knowledge—has not yet been
applied.

We are referring to a structure in which regional disparities are modeled by means of
healthcare asymmetries over time, producing a healthcare performance gap across regions
and motivating a patient mobilization pattern since the majority of the influx of patients
was concentrated in developed regions. Our results support the hypothesis that hospital
efficiency performance is a strong pulling factor for this inflow, and the direction of this
effect is robust according to different specifications and estimation methods. However,
when we split the sample separating basic and specialized hospitals, this effect disappears
for the former, but gets even stronger for the latter. In addition, we identify spillover
effects in the mobilization flows, not just in the form of patients arriving at neighboring
destination hospitals from an origin canton, but from patients arriving at a given hospital
from cantons close to that origin, and arriving at adjacent hospitals as well.

This evidence has two implications. First, the efficiency effect suggests that patients
are perceiving—to some extent—hospital performance as a proxy for hospital quality that
is encouraging cross-border migration to receive a better medical treatment than what
they can get in their local area. However, this decision is based on the availability of
specialized hospitals in the destination region, which are mostly concentrated in highly
developed areas. The possibility also exists that other hospitals are referring patients for
complex diseases, as they do not possess the resources to treat them. Second, spillover
effects present in the data are suggesting that other hospitals neighboring the special-
ized ones are also capturing some of those inflows of patients. According to Brekke et al.
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(2014), if there were competition among hospitals (which we find with the statistical sig-
nificance of the network effects), this could entail a beneficial effect on the welfare of the
population, as more competition encourages higher quality of care. However, hospitals
from less-developed regions might not be benefiting from that welfare increase, as there
is no incentive to provide better medical attention and hence just those that travel beyond
regional borders may enjoy it.

Our results deliver useful suggestions for policy makers. On the one hand, new re-
forms need to be well-planned not just in terms of territorial discrepancies but also in
terms of hospital specialization. For example, decreasing the limitations to specialized
care could incur an increase of healthcare demand, that, if not controlled, could lead to
negative consequences like congestion effects. Negative shocks to specialized hospitals
induce a negative impact on their performance as well as the demand for the hospitals
that surround them and as consequence, affects the efficiency of the hospitals of the whole
region and the welfare of the population. Public authorities could identify those key play-
ers in the healthcare network to target strengthening reforms that could encourage better
performance within the public healthcare system of the region due to spillover effects.

Public healthcare policy can devote a larger share of their resources to targeting invest-
ment in those less-developed regions. The significant origin-based spatial dependence
suggests the existence of clusters of less-developed cantons that are recording an outflow
of patients. If there were not enough demand for local hospitals to compete, there would
be no incentive to increase the quality of care over there. Therefore, public investment
could be focused on the creation of specialized hospitals —or specialized wards in exist-
ing hospitals— in these regions to attract more demand. Once the inflow of patients is
stablished, new spillover effects could arise, benefiting adjacent hospitals and bringing
improvements both for the regional healthcare performance and welfare so as to benefit
the low-income patients of that place, who cannot afford to receive treatment in other
cantons.

Finally, future research implications can be derived from this study. As pointed out,
the effect of efficiency performance on migration flows could be driven by the percep-
tion of patients selecting a given hospital (where they perceive they could receive better
medical treatment) or by other hospitals referring highly complex cases to those best-
performers (or both). Unfortunately, our dataset does not account for information on pa-
tient referrals to disentangle the size of these effects, but it opens up interesting method-
ological research strategies to be investigated in future studies.

Further research can also aim to explore the determinants of maternal mobility. The
exploratory analysis performed in our study points to an outflow of patients looking for
obstetric services in (high-performing) specialized hospitals. These preliminary results
suggest a bad quality of public obstetric healthcare in hospitals locating in less-developed
areas. In this respect, future studies can focus on identifying the hospital’s (or regional)
features that produce this pushing effect. The results may be used to address important
issues such as reducing child or maternal mortality in low-income areas of Ecuador.
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Appendices

A Institutional setting

The Ecuadorian healthcare system accounts for public and private service sectors. The
public sector accounts for the majority of the insured population, with a 66% covered by
the year 2014, according to the Survey of Life Conditions. Private insurance accounts for
6% only. The institutions belonging to the public healthcare sector are:

1. The Public Ministry of Health (MSP) and the Ministry of Social and Economic In-
clusion (MIES), which provide health services to the whole population, including those
that do not account with any type of insurance.

2. The social security institutions which embed the Ecuadorian Social Security In-
stitute (IESS), the Social Security Institute of the Armed Forces (ISSFA) and the Social
Security Institute of the National Police (ISSPOL). The former provides medical services
to all social security contributors; while the latter two grant medical attention to the army
and national police corps, respectively.

Ecuador is a country that has suffered from a continuous process of healthcare dete-
rioration that began in the 1990s, with a period of democratic instability that hinged the
performance of healthcare with a reduction of budget for healthcare provision, worsening
infrastructure due to lack of investment, low quality of healthcare services and a deficient
institutional structure (Granda and Jimenez, 2019).

In 2008 the new constitution came into force and many reforms have been carried
out to promote access to medical treatment and reduce financial and social barriers to
healthcare. For instance, the gratuity of medical services provided by the MSP in 2008 or
mandatory enrollment of employees to social security in 2011. After the implementation
of these policies, there was in increase in the annual growth rate of active beneficiaries
(Orellana et al., 2017), and a rise of 40% of patients attended in public hospitals be-
tween 2006 and 2014 (Piedra-Pefia and Prior, 2020). These reforms were supported by
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an increasing public investment for the core system, mostly involving the endowment of
medical infrastructure and training.

B Bayesian Markov Chain Monte Carlo estimation

In this appendix, we describe the Bayesian MCMC robust estimation proposed in LeSage
and Pace (2009). We depart from the spatial econometric interaction model specified in
equation (20) and introduce a set of latent variance scalars for each observation, so we
have:

e ~N(0,6%V)
‘71'1' = ‘/l,l = 1,...,N
V =vec(R)

V11 Vi ... Ulnd
V21 V22 V2ny

vnol vnond

Estimates of the N variance scalars are obtained using an iid x%(}) prior on each vij
contained in matrix R, with mean of unity and a mode and variance that depend on the
hyperparameter A of the prior.

In order to obtain the MCMC estimations, we need to sample sequentially from the
set of conditional distributions for all the parameter of the model: 9,0, py, o, Pw and V;;,
where 0 = [a, B4, Bo, V]'-

The conditional distributions for 6 and o are stablished by assigning uninformative
priors to the parameters 6, and independent inverse gamma distribution (I1G(a,b), with
a="b = 0) prior to 2. We rely on a uniform prior over the range —1 < pg,0,, 0w < 1
and impose stability restrictions such that } ;p; > —-1,} ;p; < 1,i = d,0,w using rejection
sampling. The prior for the variance scalars v;; are based on Geweke’s iid chi-squared
with A degrees of freedom. The prior distributions, indicated with 7 are expressed as:

7(0) <« N(c,T),c=0,T > o0 (25)
(A/vij) ~iidx*(A) (26)
7(0?) ~1G(a,b) (27)
n(p;)~U(-1,1),i=d,o,w (28)
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The conditional posterior distribution for the parameters 0o, 02, and each variance
scalar v;; can be taken from LeSage and Pace (2009).#% In addition, we need to sample
each of the three parameters py, p,, o, conditional on the two other dependence param-
eters and the remaining parameters (6,02, V), which is carried out using a Metropolis-
Hastings algorithm based on a tuned normal random walk.*’

C Variable description

Table 8: Variable description

Variable

Description

Variable construction

Output
Number of discharges
(weighted)

Morbidity consults
Emergency consults

Survival rate

Inputs

Number of physicians
Number of beds
Number of hospital
personnel

Number of equipment
and infrastructure

Environmental Vari-
ables
Per-capita GVA

Density

Occupancy rate

Cantonal Mortality

NBI

Insurance Rate

Treated patients in a given hospital
Morbidity consults in a given hospital

Emergency consults in a given hospital

Rate of non-deceased discharged patients in a
given hospital

Physicians and general physicians in a given
hospital

Total amount of beds per hospital

Medical staff not including physicians. E.g.
Nurses, technologists, administrative staff,
dentist, etc.

Physical infrastructure (surgery rooms, in-
tensive care rooms, etc.) and medical equip-
ment (imaging, diagnosis, sterilization, etc.)

Cantonal per-capita Gross Value Added
Cantonal population density

Incoming patients days of care per beds avail-
able in a given hospital

Percentage of deceased patients in a given
canton (per 1000 population) relative to can-
tonal population

Percentage of households that present at least
one unsatisfied basic necessity, relative to the
total households in a respective canton
Percentage of insured population relative to
the cantonal population

Number of discharges*Case-Mix
index
Total number of morbidity con-
sults
Total number of emergency con-
sults

1-hospital mortality rate

Total number of physicians
Total number of beds
Total number of hospital person-

nel

Total number of equipment and
infrastructure

GVA/cantonal population
Cantonal  population/Canton’s
area in Km?

(Inpatient days of care/Bed days
available) ¥*100

Cantonal mortality*1000

NBI_household/Total households

Population insured/cantonal pop-
ulation

Source: The authors.

#8Refer to LeSage and Pace (2009) chapter 8
49Refer to LeSage and Pace (2009) chapter 5
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p-value

Order-m robustness analysis

Figure 2: Order-m p-values
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Eff. ratio

Eff. ratio
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Figure 3: Conditional order-m partial regression plots
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E Hospital distribution

Figure 4: Territorial distribution of basic and specialized hospitals




F Interregional patients’ demographics

The information provided in this Appendix is collected for the interregional patients
treated for the top five morbidity causes in specialized hospitals.

Table 9: Top five morbidity causes of interregional patients in specialized hospitals

Morbidity cause Total patients  Percentage
Pregnancy (single spontanous delivery) 8307 4.66
Acute appendicitis 5068 2.84
Pregnancy (caesarean section) 3821 2.14
Calculus of the gallbladder (without cholecystitis) 3143 1.76
Pneumonia 3012 1.69

Note: Percentages calculated relative to the total amount of patients treated in specialized hospitals
Source: The authors.

Table 10: Total interregional patients by canton and province of residence

Province of residence/Canton ) .
/ Cuenca Guayaquil Quito

of the hospital

Azuay 284 18 1
Bolivar 1 23 40
Canar 119 41 2
Carchi 0 1 35
Cotopaxi 1 12 76
Chimborazo 7 21 35
El Oro 49 50 15
Esmeraldas 0 52 62
Guayas 23 1709 9
Imbabura 1 3 89
Loja 28 8 14
Los Rios 2 260 18
Manabi 7 152 43
Morona Santiago 62 1 7
Napo 0 1 20
Pastaza 0 15 10
Pichincha 4 15 588
Tungurahua 2 4 36
Zamora Chinchipe 5 2 1
Galédpagos 0 5 3
Sucumbios 1 3 37
Orellana 0 5 35
Santo Domingo de los Tsachilas 0 16 63
Santa Elena 0 69 2
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Share by gender

Table 10 (continued)

Province of residence/Canton

of the hospital Cuenca Guayaquil Quito

Exterior 1 2 1

Source: The author.

Figure 5: Share of interregional patients by gender and ethnic group.
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Figure 6: Share of interregional patients by hospital’s public entity and ethnic group.
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