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Abstract

The literature on temptation and self-control is motivated by ev-
idence of a preference for commitment. This literature has typically
put forth models for preferences over menus of lotteries that satisfy
the Independence axiom. Independence requires that the ranking of
two menus is not affected if each is mixed (probabilistically) with a
common third menu. In particular, the preference for commitment is
invariant under Independence. We argue that intuitive behavior may
require that the preference for commitment be affected by such mix-
ing, and hence be mixture-dependent. To capture such behavior, we
generalize Gul and Pesendorfer (2001) by replacing their Independence
axiom with a suitably adapted version of the Mixture-Betweenness ax-
iom of Chew (1989)-Dekel (1986). Axiomatizing the model involves a
novel extension of the Mixture Space Theorem to preferences that sat-
isfy Mixture-Betweenness.
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1 Introduction

1.1 Overview

A key motivation for the literature on temptation and self-control problems
comes from evidence of a preference for commitment (Bryan et al. (2010),
Gul and Pesendorfer (2007) and Laibson (1997)). For instance a dieter might
strictly prefer to eat at a salad bar rather than at a restaurant that offers both
salad (s) and burgers (b). Identifying a restaurant with the set of alternatives
it offers, this agent therefore exhibits

{s} ≻ {s, b}.

In a seminal paper, Gul and Pesendorfer (2001) (henceforth GP) provide an
axiomatic model of temptation and self-control that characterizes a preference
over menus (of lotteries) in a manner that permits such preference for commit-
ment. A distinct feature of GP is that it maintains the Independence axiom
(appropriately adapted to the domain). We observe that Independence implies
that preference for commitment must be mixture independent in the following
sense:

{s} ≻ {s, b} =⇒ {αs+ (1− α)i} ≻ {αs+ (1− α)i, αb+ (1− α)i},

where αs + (1 − α)i and αb + (1 − α)i are lotteries that yield s and b with
probability α respectively and dish i with probability (1− α).

The main motivation of this paper is the idea that preference for com-
mitment may in fact be mixture-dependent.1 To illustrate, consider a frugal
vacationer who is planning a trip and needs to choose a hotel room. During
her trip, she expects to use the room only to sleep. Hence, she strictly prefers
a conventional room (c) to a fancy room (f). The vacationer can either choose
to reserve the room in advance and commit to staying in the room she re-
served, or choose the room once she arrives at the hotel. She believes that
if she waits until she arrives, she will not feel tempted to choose f ; after all,
she is very careful with her spending and will only be using the room to sleep.
Hence,

{c} ∼ {c, f}.
1Although mixture-dependent preference for commitment has not been tested directly in

a laboratory experiment, there exists evidence in the psychology literature that suggests it
exists. In particular, Milkman (2012) findings suggests that temptation is sensitive to risk
and thus, imply mixtures can affect the preference for commitment.
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However, being a preferred member of the hotel, she receives a promotion: her
name will be added to a raffle where the prize is a free night in the fancy room,
which we will denote by f ′, with full reimbursements if necessary. If she waits
until she arrives at the hotel to choose a room, then she will face a choice
between two lotteries: αc+ (1− α)f ′ and αf + (1− α)f ′ where (1− α) is the
probability she wins the raffle. Since there is a possibility that she might be
able to stay in the fancy room for free, she will be dreaming about it for the
rest of the day. Hence, if she waits to choose the room until she arrives, by then
the idea of having to stay in the conventional room if she looses the lottery
will make her feel tempted to choose the fancy room. Thus, in order to avoid
temptation and stick to her budget, she would rather book the conventional
room in advance:

{αc+ (1− α)f ′} ≻ {αc+ (1− α)f ′, αf + (1− α)f ′}.

Building on GP, we provide a novel axiomatic model of temptation and
self-control. Like GP, our model characterizes preference over menus of lotter-
ies. The key difference is that our model can accommodate mixture-dependent
preference for commitment; it does do so by weakening Independence to a prop-
erty we refer to as Mixture-Betweenness which adapts the Mixture-Betwenness
axiom of Chew (1983) and Dekel (1986).

More specifically, let ∆(X) be the set of all lotteries with payoffs in X.
GP consider a preference ⪰ over the set of all menus of lotteries (subsets of
∆(X)). The interpretation is that at an unmodeled second stage, a lottery
is selected from the menu chosen ex-ante according to ⪰. GP axiomatize the
following utility function for ⪰,

V (x) = max
p∈x

{u(p) + v(p)−max
q∈x

v(q)},

for all menus x, where u and v are vNM utility functions over lotteries. For
singleton menus, V ({p}) = u(p) and thus u describes preference under com-
mitment, which we interpret as describing the agent’s normative view. The
function v describes the agent’s urges at the moment in which she will make a
choice out of the menu. Without commitment, the agent is tempted to deviate
from the choices prescribed by u and maximize v. Temptation can be resisted,
but at the cost of self-control which is described by max

q∈x
v(q) − v(p). Since

u and v are vNM utility functions, they satisfy the standard Independence
axiom. This is imposed only for reasons of analytical convenience.

The fact that in GP’s model the normative and temptation utilities are lin-
ear precludes their model from accommodating mixture-dependent preference
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for commitment. In fact this limitation exists also in subsequent generaliza-
tions of GP in the literature (Dekel et al. (2009), Chatterjee and Krishna
(2009), Noor and Takeoka (2010, 2015), Stovall (2010) and Kopylov (2012)).
In order to accommodate mixture-dependent preference for commitment we
need to allow for non-linear u and v.

This motivates us to consider the Chew (1983)-Dekel (1986) model for
preference over risk. Their model is motivated by the descriptive failure of
the Independence axiom and generalizes vNM utility theory. In particular, it
is an implicit utility model in which the utility γ of a lottery p is the unique
solution of

γ = u(p, γ),

where u(., γ) is a vNM utility function over lotteries for all γ. The main
ingredient in the characterization of the model is the Mixture-Betweenness
axiom which is a weakening of Independence that is compatible with behavior
such as the Allais paradox.2

Our model combines GP and Chew-Dekel. The result is an implicit utility
model in which the utility of a menu x is defined as the unique γ that solves

γ = max
p∈x

{u(p, γ) + v(p, γ)−max
q∈x

v(q, γ)},

where u(., γ) and v(., γ) are vNM utility functions over lotteries for all γ. It
differs from GP by allowing the normative and temptation rankings to be non-
linear and menu-dependent. In particular, both depend on the menu through
the overall level of utility. The main reason to allow such systematic relation
is that the strength of a temptation may be endogenous: it depends on what
alternatives are available.3 Similarly, how normatively appealing an alternative
is may also depend on what is available.

Notice that our model is inherently non-linear. Hence, standard tools can-
not be used to axiomatize it because they rely on the Mixture Space Theorem
(Herstein and Milnor (1953)) at a fundamental level. Thus, we are forced
to take a different approach. In particular, we develop a novel extension of
the Mixture Space Theorem to preferences that satisfy Mixture-Betweenness.
Since the Mixture Space Theorem is central to decision theory, our extension
is potentially useful for addressing issues in economics other than temptation.
Hence, we view it as a separate contribution of the paper.

2A special case of Chew-Dekel is the well known “disappointment aversion” model of Gul
(1991) which admits an explicit representation (Cerreia-Vioglio et al. (2020)).

3See Mihm and Ozbek (2018) for a discussion of why temptation preferences may be
endogenous.
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The paper proceeds as follows: The introduction concludes with a review
of the relevant literature. Axioms and the implied representation of utility are
described in Sections 2 and 3 respectively. Section 4 studies the special case
of the model in which the normative utility is linear and relates it to a version
of the Allais Paradox. Section 5 contains a discussion of mixture-dependent
preference for commitment, axiomatic foundations for two special cases of
the model and concludes with some observations of the behavior allowed by
mixture-dependent preference for commitment in a consumption-savings con-
text. Section 6 concludes with our version of the Mixture Space Theorem and
a discussion of its potential applications. The proof of the new Mixture Space
Theorem is provided in Appendix A. The remaining proofs are collected in
Appendix B.

1.2 Literature Review

This paper contributes to the axiomatic literature on temptation and self-
control (Gul and Pesendorfer (2001), Dekel et al. (2001), and for a survey of the
subsequent literature see Lipman and Pesendorfer (2013)). The closest papers
to ours are Noor and Takeoka (2010, 2015) and Liang et al. (2019). They
also generalize GP by weakening Independence. Noor and Takeoka (2010)
extends GP to a model with a convex self-control cost, a feature shared by
the non-axiomatic model of Fudenberg and Levine (2006). Liang et al. (2019)
enrich GP by endowing the agent with a stock of willpower that cannot be
exceeded by the cost of self-control in any menu.4 In all of these models,
the agent’s normative and temptation utilities satisfy the Independence axiom
thereby ruling out mixture-dependent preference for commitment. Further,
both models are motivated by behavior that does not rely on the fact that the
object of choice are lotteries.

Dillenberger and Sadowski (2012) provide a model of shame for prefer-
ences over menus of monetary divisions between two agents, a dictator and
a recipient. Their model adapts and extends GP, and can accommodate the
following experimental finding: when subjects are presented with a menu of
monetary divisions, they tend to behave altruistically whenever the recipient
can observe the menu from which they are making the choice. However, at an
ex-ante stage that is not observed by the recipient, some subjects are willing
to give up part of their payoff in exchange for the removal of “fair” monetary

4A closely related paper, Masatlioglu et al. (2020) deals with menus of abstract alter-
natives rather than menus of lotteries. However, an early version included lotteries in the
domain and imposed linearity on the temptation preferences.
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divisions so that in the second stage they can choose “unfair” divisions with-
out feeling any shame. Since the objects of choice in their set up are menus of
deterministic alternatives, their analysis is silent about mixture-dependence.

Following Dillenberger and Sadowski (2012) and GP, Saito (2015) develops
a model of impure shame and impure altruism (that is, shame and altru-
ism driven by temptation) for preferences over menus of lotteries. His model
satisfies the Independence axiom and thus, cannot accommodate mixture-
dependent preference for commitment.

Dekel et al. (2009), Chatterjee and Krishna (2009), Stovall (2010) and
Kopylov (2012) also generalize GP. Their models satisfy the Independence
axiom. We believe that our Mixture Space Theorem and the arguments used
in the proof of Theorem 3.1 can be used to generalize these models in the same
way that we generalize GP.

Finally, outside the temptation literature but within the menus of lotteries
literature, Ergin and Sarver (2010) derive a utility representation of costly
contemplation. The model assumes that the agent chooses from a menu with
imperfect knowledge of her preference over lotteries. In particular, the agent
considers a set of possible preferences over lotteries where each of them satisfies
the standard Independence axiom. Their key axiom, referred to as Aversion
to Contingent Planning, is a weakening of our adaptation of the Mixture-
Betweenness axiom.

2 Axioms

Let X be a finite set of cardinality n. A lottery is a probability measure over
X. The set of all lotteries is denoted ∆(X) and X denotes the set of all of its
non-empty closed subsets. We endow X with the topology generated by the
Hausdorff metric.5 A menu is an element of X . Generic menus will be denoted
by x, y and z and generic lotteries will be denoted by p, q and r. Each lottery
p can be identified with the singleton menu {p} ∈ X . Thus, where it does not
cause confusion we will abuse notation and write p instead of {p} and ∆(X)
instead of {{p}|p ∈ ∆(X)}.

Our primitive is a preference ⪰ over X . We impose four axioms on ⪰ of
which the first three are from GP.

Weak Order ⪰ is complete and transitive.

5Let d be any metric on ∆(X). For any x, y ∈ X and p, q ∈ ∆(X), define d(p, y) ≡
inf
q∈y

d(p, q) and dh(x, y) = max{sup
p∈x

d(p, y), sup
q∈y

d(q, x)}. The topology generated by dh is the

Hausdorff metric topology.
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Hausdorff Continuity {y|x ⪰ y} and {y|y ⪰ x} are closed for all x ∈ X .

Set-Betweenness x ⪰ y implies x ⪰ x ∪ y ⪰ y.

Set-Betweenness admits an interpretation in terms of temptation and self-
control. To illustrate, consider the ranking {p} ≻ {p, q} ≻ {q}. The ranking
{p} ≻ {p, q} is referred to as preference for commitment, it suggests that the
agent expects to be temped by q if she faces {p, q}. Thus, {p, q} ≻ {q} implies
that the agent expects to be able to resist temptation if she faces {p, q}, but it
will require costly self-control. Similarly, {p} ≻ {p, q} ∼ {q} suggests that the
agent expects to be overwhelmed by temptation if she faces {p, q}. Finally,
the lack of preference for commitment in {p} ∼ {p, q} ≻ {q} suggests that the
agent does not expect to be tempted by q if she faces {p, q}.

Whenever x ⊂ y and x ≻ y we say ⪰ has preference for commitment
at y. Under the temptation and self-control interpretation, preference for
commitment at y reveals that there is some element in y that the agent expects
to be tempted by and thus, would like to remove from the feasible set she will
face in the second stage.

For any two menus x, y and α ∈ [0, 1], define the mixture αx+ (1−α)y as
the menu generated by the point-wise mixtures:

αx+ (1− α)y = {r ∈ ∆(X)|r = αp+ (1− α)q, p ∈ x, q ∈ y}.

GP’s fourth axiom formulates the standard vNM Independence axiom in the
menus of lotteries setting.

Independence x ⪰ y implies αx+ (1− α)z ⪰ αy + (1− α)z for all α ∈ [0, 1]
and z ∈ X .

GP, Dekel et al. (2001) and the literature that followed them adopt this
axiom because of its normative appeal and the analytical convenience it offers.
To understand their motivation consider an extension of the preference to the
set of lotteries over X , the interpretation being that randomization over menus
is resolved before the second stage. Suppose that this extended preference
satisfies the standard vNM Independence axiom: the preference between a
lottery that yields with probability α a menu x and with probability 1 − α
a menu z (denoted by α ◦ x + (1 − α) ◦ z) and α ◦ y + (1 − α) ◦ z is the
same as the preference between x and y. If the agent is indifferent between
uncertainty being resolved before the second stage or after the second stage,
then she satisfies Reduction:

α ◦ x+ (1− α) ◦ y ∼ αx+ (1− α)y for all x, y ∈ X and α ∈ [0, 1].
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Observe that vNM Independence and Reduction imply Independence. How-
ever, we claim that temptation may lead to violations of vNM Independence.
Recall the rankings in our example:

{c} ∼ {c, f}
{αc+ (1− α)f ′} ≻ {αc+ (1− α)f ′, αf + (1− α)f ′}.

(1)

The intuition behind these rankings implies that the agent would strictly prefer
α ◦ {c}+ (1− α) ◦ {f ′} to α ◦ {c, f}+ (1− α) ◦ {f ′} because once there is a
possibility she might be able to stay in the fancy room for free, she will prefer
to stay in the fancy room rather than the conventional room. Hence, if the
lottery α ◦ {c, f}+ (1− α) ◦ {f ′} yields {c, f}, she will feel tempted to choose
f .

More generally, Independence implies that preference for commitment is
mixture independent: if ⪰ has preference for commitment at y, then ⪰ also
has preference for commitment at αy + (1− α)z for all α ∈ (0, 1] and z ∈ X .
This follows from the fact that under Independence,

x ≻ y =⇒ αx+ (1−α)z ≻ αy + (1− α)z

and

x ⊂ y =⇒ αx+ (1−α)z ⊂ αy + (1− α)z.

Hence, Independence needs to be weakened. We weaken it to Mixture-
Betweenness. Intuitively, Mixture-Betweenness requires the indifference
curves be linear but allows them to not be parallel. Thus, the ranking of
two menus may change when each is mixed with a common third menu.

Mixture-Betweenness
x ≻ y implies x ≻ αx+ (1− α)y ≻ y for all α ∈ (0, 1), and
x ∼ y implies x ∼ αx+ (1− α)y ∼ y for all α ∈ (0, 1).

Mixture-Betweenness requires that if an agent prefers x to y, then the
mixture between x and y has to be between these two menus in terms of
preference. In particular, if an agent is indifferent between two menus, then
any mixture of these two is equally good. Hence, it implies that the indifference
sets are convex. Next, we consider what Mixture-Betweenness permits and
what it rules out.

Mixture-dependent preference for commitment is permitted by Mixture-
Betweenness. For instance, the rankings in (1) are consistent with Mixture-
Betweenness because the latter is silent about behavior that involves more than
two menus. However, it does rule out a specific class of mixture-dependent
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preference for commitment. To illustrate, consider a dieter who prefers to go
to a salad bar rather than a restaurant that offers salads (s) and burgers (b):

{s} ≻ {s, b} ⪰ {b}. (2)

Suppose now that there is a small new restaurant that also offers salads and
burgers, but its burgers are so popular that it sometimes runs out of them.
Therefore, its menu offers salads and a lottery between burgers and salads.
Mixture-Betweenness would then require that the dieter would also expect to
feel temptation if she goes to the new restaurant because its menu is equal to
a mixture between the salad bar and the restaurant. In particular, it is equal
to

{s, αs+ (1− α)b},

where α is the probability that the restaurant runs out of burgers. Hence,

{s} ≻ {s, b} =⇒ {s} ≻ {s, αs+ (1− α)b}.

In general, Mixture-Betweenness requires that if x ⊂ y and x ≻ y, then
x ≻ αx+(1−α)y. Thus, it implies that if the agent has preference for commit-
ment at y, then the agent’s preference for commitment is mixture independent
whenever the mixture is with any subset of y that she would prefer to commit
to.

Mixture-Betweenness also imposes some structure on the agent’s self-control.
To illustrate, consider again the dieting agent. Suppose now that there are two
restaurants that belong to the same chain and assume that one is smaller than
the other. The smaller restaurant does not have a fixed menu. Rather, its
menu its picked randomly by the chef (chef’s pick). It can either be a salad or
a burger. The larger restaurant not only offers the chef’s pick, but in addition
it has a fixed burger selection. Consistent with the preference for commitment
she exhibited in (2), she prefers to go to the smaller restaurant. Hence,

{αs+ (1− α)b} ≻ {αs+ (1− α)b, b}

where α is the probability that the chef’s pick is a salad. If the dieter exerted
costly self-control in {s, b} (that is, if {s, b} ≻ {b} in (2)), then since the
menu at the larger restaurant is a mixture between {s, b} and {b}, Mixture-
Betweenness implies that

{αs+ (1− α)b, b} ≻ {b}.
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Thus, if the dieter expects to resist temptation when facing {s, b}, then she
must also expect to resist temptation when facing {αs + (1− α)b, b}. Hence,
whenever her preference for commitment is preserved in a mixture with the
tempting alternative, so is her ability to resist temptation.

As a matter of fact, Mixture-Betweenness also requires the lack of self-
control to be mixture independent for certain mixtures. For instance, suppose
that the dieter thinks she will be overwhelmed by temptation if she goes to the
old restaurant that offers salads and burgers (that is, if {s, b} ∼ {b} in (2)).
Suppose now that she is also considering the large chain restaurant. Since
the menu at the large chain restaurant is a mixture between {s, b} and {b},
Mixture-Betweenness requires that

{αs+ (1− α)b, b} ∼ {b}.

Thus, if the dieter expects to be overwhelmed by temptation when facing
{s, b}, then she must also expect to be overwhelmed by temptation when facing
{αs+(1−α)b, b}. Hence, her lack of self-control is mixture independent when
mixing with the overwhelming alternative.

We see therefore that the agent’s self-control is mixture independent in a
limited sense:

If {s} ≻ {s, b}, then {s, b} ≻ {b} if and only if {αs+ (1− α)b, b} ≻ {b}.

This suggests that Mixture-Betweenness imposes a form of mixture indepen-
dence of self control costs. In contrast, the model of convex self-control costs
of Noor and Takeoka (2010) only allows for mixture dependent self-control
and imposes mixture independence on the preference for commitment. To be
precise, their model can accommodate behavior of the following type:

{s} ≻ {s, b} ∼ {b}
{αs+ (1− α)b, b} ≻ {b}.

(3)

The reason is that in their model, the marginal cost of self-control is increasing
in the exertion of self-control. Hence, achieving “small” deviations from the
tempting alternative is easier than large deviations. In terms of the rankings
in (3), their model permits the dieter to believe that she will be able to choose
αs + (1 − α)b in the presence of b even if she expects to choose b from {s, b}
for a small enough α. Similarly, Mixture-Betweenness also rules out behavior
related to concave self-control costs:

{s} ∼ {s, b} ≻ {b}
{s} ≻ {s, αs+ (1− α)b}.
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3 Results

3.1 Representation Theorem

Say that ⪰ is non-trivial if there exists x, y ∈ X such that x ≻ y.
The central result of the paper is the following axiomatization of utility

over menus.

Theorem 3.1. A non-trivial preference ⪰ satisfies Weak Order, Hausdorff
Continuity, Set-Betweenness and Mixture-Betweenness if and only if there ex-
ist u, v : ∆(X)× [0, 1] → R such that:

1. u(., γ) and v(., γ) are vNM utility functions for all γ ∈ [0, 1].

2. u is continuous in its second argument on the interval (0, 1).

3. u(p, γ) = 1 and u(p, γ) = 0 for all γ ∈ [0, 1] for some p, p ∈ ∆(X).

4. ⪰ can be represented by a continuous utility function V : X → [0, 1]
where, for each x ∈ X , V (x) is the unique γ ∈ [0, 1] that solves

γ = max
p∈x

{u(p, γ) + v(p, γ)−max
q∈x

v(q, γ)}.

One feature of our model that is not shared by any other model in the
menus literature is that it does not reduce to expected utility over lotteries,
that is, for menus that offer commitment: x = {p} for some p ∈ ∆(X). Rather,
it reduces to the Chew-Dekel model for preference under risk:

V ({p}) = u(p, V ({p})).

The fact that the normative preferences are Chew-Dekel is not necessarily
shared by the temptation preferences. In particular, v may not define a utility
over ∆(X) that has the Chew-Dekel form. To illustrate, consider the case in
which u is independent of γ and v(., γ) = −γu(.). Then, v does not define
an implicit utility function over ∆(X). However, (u, v) do define an explicit
utility function over X :

V (x) =
max
p∈x

u(p)

1 + max
p∈x

u(p)−min
q∈x

u(q)
.

In this special case, the self-control cost is not additive, its multiplicative.
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Say that (u, v) represents ⪰ if it satisfies the conditions of Theorem 3.1.
Note that it is not the case that any (u, v) that satisfies conditions 1-3 in
Theorem 3.1 implicitly defines a utility function V as in condition 4. In the
supplemental appendix (Section S.3) we provide a set of sufficient conditions
for (u, v) which guarantees the existence of an implicit utility representation.

3.2 Uniqueness

To state the uniqueness properties of our model we require some additional
terminology. Given any pair of functions f, g : ∆(X) → R, we say that f is a
positive affine transformation of g if there exist a, b ∈ R such that a > 0 and
f = ag + b. Similarly, f is a negative affine transformation of g if there exist
a, b ∈ R such that a < 0 and f = ag + b.

Theorem 3.2. Let (u, v) and (u′, v′) be such that u(p, γ) = u′(p, γ) = 1 and
u(p, γ) = u′(p, γ) = 0 for all γ ∈ [0, 1] for some p, p ∈ ∆(X). Then both (u, v)
and (u′, v′) represent ⪰ if and only if for all γ ∈ (0, 1), u(., γ) = u′(., γ) and:

1. If v(., γ) is a positive affine transformation of u(., γ) or a constant, then
v′(., γ) is a positive affine transformation of v(., γ) or a constant.

2. If v(., γ) = −aγu(., γ) + bγ for some aγ ≥ 1 and bγ ∈ R, then
v′(., γ) = a′γv(., γ) + b′γ for some a′γ ≥ 1

aγ
and b′γ ∈ R.

3. If v(., γ) is not a constant or a positive affine transformation of u(., γ)
and the condition in 2 does not hold, then v′(., γ) = v(., γ)+ bγ for some
bγ ∈ R.

The uniqueness properties of u are completely characterized by the restric-
tion of ⪰ to ∆(X). In particular, for every p ∈ ∆(X), V (p) is the unique
γ ∈ [0, 1] that solves

γ = u(p, γ),

where u(p, γ) = 1 and u(p, γ) = 0 for all γ ∈ [0, 1]. Dekel (1986) shows that
such representations are unique.

Because u is completely characterized by the restriction of ⪰ to menus that
offer commitment, we interpret the utility function implicitly defined by u as
the agent’s commitment preferences.

To aid intuition for the uniqueness properties of v we describe why the
conditions in Proposition 3.2 are sufficient. Assume (u, v) represents ⪰ and
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fix γ ∈ (0, 1). If v(., γ) is a constant or a positive affine transformation of
u(., γ), then for all x ∈ X ,

argmax
p∈x

v(p, γ) = argmax
p∈x

{u(p, γ) + v(p, γ)},

and

max
p∈x

{u(p, γ) + v(p, γ)−max
p∈x

v(p, γ)} = max
p∈x

u(p, γ).

Thus, replacing v(., γ) with a constant or one of its positive affine transforma-
tions does not affect the representation. If v(., γ) = −aγu(., γ) + bγ for some
aγ ≥ 1, then for all x ∈ X ,

argmax
p∈x

{v(p, γ)} = argmin
p∈x

{u(p, γ)}

and

argmin
p∈x

{u(p, γ)} ⊆ argmax
p∈x

{u(p, γ) + v(p, γ)}.

To see this, note that for any aγ ≥ 1 and p, q ∈ ∆(X) such that u(p, γ) ≥
u(q, γ),

u(p, γ)− u(q, γ) ≤ aγ(u(p, γ)− u(q, γ))

u(p, γ)− aγu(p, γ) + bγ ≤ u(q, γ)− aγu(q, γ) + bγ

u(p, γ) + v(p, γ) ≤ u(q, γ) + v(q, γ).

Hence,

q ∈ argmin
p∈x

{u(p, γ)} =⇒ q ∈ argmax
p∈x

{u(p, γ) + v(p, γ)},

and

max
p∈x

{u(p, γ) + v(p, γ)−max
q∈x

v(q, γ)} = min
p∈x

{u(p, γ)},

for all x ∈ X . Thus, if we replace v(., γ) with v(., γ) = a′γv(., γ) + b′γ for some
a′γ ≥ 1

aγ
, then v′(., γ) is also a negative affine transformation of u(., γ) in which

the coefficient multiplying −u(., γ) is greater than or equal to one. Thus, the
representation is not affected. Finally, note that if v(., γ) is not a constant or
a positive affine transformation of u(., γ) and the condition in 2 does not hold,
then for any bγ ∈ R,

max
p∈x

{u(p, γ) + v(p, γ) + bγ −max
q∈x

{v(q, γ) + bγ}} =max
p∈x

{u(p, γ) + v(p, γ)

−max
q∈x

v(q, γ)}.

Hence, replacing v(., γ) with v(., γ) + bγ does not affect the representation.
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3.3 Illustration

We conclude this section by illustrating our model in the context of our moti-
vating example. Details concerning the calculations below can be found in the
supplemental appendix (Section S.4). Recall the rankings in our motivating
example:

{c} ∼ {c, f} ≻ {f}
{αc+ (1− α)f ′} ≻ {αc+ (1− α)f ′, αf + (1− α)f ′}.

Consider the special case of our model in which the normative utility is linear
and independent of the overall level of utility. Let

u(f ′) = 1, v(f ′, γ) = 1

u(c) =
1

2
, v(c, γ) =

1− γ

2

u(f) = 0, v(f, γ) =
γ

2

for all γ ∈ [0, 1]. For any lottery p ∈ ∆({c, f, f ′}), we will abuse notation and
write u(p) and v(p, γ) instead of

∑
a∈{c,f,f ′}

p(a)u(a) and
∑

a∈{c,f,f ′}
p(a)v(a, γ).

This special case of the model can accommodate the intuition behind the
rankings in the example. The reason is that for x = {c, f} and y = {αc+(1−
α)f ′, αf + (1− α)f ′},

V (x) = u(p)

V (y) = u(p′) + v(p′, V (y))− v(q, V (y)),

where p = c, p′ = αc + (1 − α)f ′ and q = αf + (1 − α)f ′. Hence, the model
predicts that the agent does not expect to feel any temptation if she faces {c, f}
in the second stage. However, if she faces {αc + (1 − α)f ′, αf + (1 − α)f ′},
then it suggests that she expects to choose αc+ (1− α)f and be tempted by
αf + (1− α)f ′. Further,

V ({f ′}) > V ({c}) = V ({c, f}) > V ({f})
V ({αc+ (1− α)f ′}) > V ({αc+ (1− α)f ′, αf + (1− α)f ′}),

where

V ({f ′}) = 1, V ({c}) = 1

2
, V ({c, f}) = 1

2
, V ({f}) = 0

V ({αc+ (1− α)f ′}) = 1− α

2
, V ({αc+ (1− α)f ′, αf + (1− α)f ′}) = 1

1 + α
.

Hence, the model accommodates our motivating example.
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4 Specialization

To the extent that a systematic study of temptation calls for us to attribute any
non-standard behavior to temptation, it is natural to attribute Independence
violations to temptation and self-control rather than to normative preferences.
Accordingly, we study a specialization of our model that retains linearity of
normative preference and attributes non-standard effects of randomization to
temptation preferences. Consequently, we consider:

Commitment Independence
{p} ⪰ {q} implies α{p}+ (1− α){r} ⪰ α{q}+ (1− α){r}
for all α ∈ [0, 1] and r ∈ ∆(X).

Commitment Independence requires that the agent’s commitment prefer-
ence satisfy the Independence axiom. Hence, a decision maker who views
Independence over lotteries as an appealing normative property will satisfy it.
Further, it does not restrict behavior over non-singleton menus and allows for
violations of Independence.

Proposition 4.1. Suppose ⪰ satisfies the axioms of Theorem 3.1.
Then ⪰ also satisfies Commitment Independence if and only if it admits a
representation as in Theorem 3.1 in which u(., γ) = u(., γ′) for all
γ, γ′ ∈ [0, 1].

Apart from being appealing from a modeling perspective, it suggests a non-
standard perspective on the Allais Paradox and is motivated by experimental
evidence from the time and risk literature. In experiments, subjects often
violate the standard vNM Independence axiom when choosing among lotteries
that will be realized immediately. However, Weber and Chapman (2005) and
Baucells and Heukamp (2010), show that when there is a “distance” between
the time in which the choice among lotteries is made and the time in which
the lotteries are realized, then they tend to satisfy vNM Independence.

Our model suggests a unified explanation for both facts: non-linear temp-
tation preference drive the violations of Independence when choosing among
lotteries that will be realized immediately; linear normative preferences drive
the choices when the lotteries will be realized in the future. Another possi-
ble explanation of these facts is suggested by Noor and Takeoka (2010, 2015).
They conjecture that self-control costs are the driving force behind these types
of behavior.
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5 Commitment and Mixtures

5.1 General Self-Control Models

In the introduction we claimed that GP cannot accommodate mixture-dependent
preference for commitment because of the linearity of the normative and temp-
tation preferences. Here we show that in fact, any temptation model that satis-
fies Set-Betweenness and, maintains linearity of the normative and temptation
preferences cannot accommodate mixture-dependent preference for commit-
ment.

Recall that ⪰ has preference for commitment at y if there exists x ⊂ y
such that x ≻ y. Noor and Takeoka (2010, 2015) show that any temptation
model that satisfies Set-Betweenness and maintains linearity of the normative
and temptation preference can be written in the following way:

V (x) = max
p∈x

{u(p)− c(p,max
q∈x

v(q))},

for all menus x, where u and v are vNM utility functions over lotteries and c
satisfies the following three properties:

1. c is weakly increasing in its second argument and continuous in both
arguments.

2. c(p, v(q)) > 0 implies v(q) > v(p).

3. u(p) > u(q) and v(p) < v(q) implies c(p, v(q)) > 0.

Intuitively, properties 1, 2 and 3 are the minimal properties c must possess in
order to be interpretable as a self-control cost function. In particular, property
1 says that the higher the temptation, (weakly) higher the self-control is needed
to resist it. Property 2 requires that if p is costly to choose in the presence of
q, then it must be that q offers higher temptation utility. Property 3 provides
a converse in that if q provides more temptation utility than p and there is
conflict with the normative utility, then the cost of choosing p must be strictly
positive.

Noor and Takeoka (2010) refer to this class of models as general self -
control models, and identify them with the tuple (u, v, c). As the next propo-
sition shows, such models cannot accommodate mixture-dependent preference
for commitment.

Proposition 5.1. Let (u, v, c) be a general self-control model and ⪰ the pref-
erence it represents. Then for all x, y ∈ X :

15

https://econtheory.org/ojs/index.php/te/article/viewFile/20100127/3774
https://econtheory.org/ojs/index.php/te/article/viewFile/20100127/3774


1. If ⪰ has preference for commitment at x, then ⪰ has preference for
commitment at αx+ (1− α)y.

2. Suppose there is no preference for commitment at y. If ⪰ does not have
a preference for commitment at x, then ⪰ does not have preference for
commitment at αx+ (1− α)y.

To illustrate why mixture-dependent preference for commitment necessi-
tates a violation of linearity of at least v, consider the following possible rank-
ings involving binary menus:

(∗) {p} ≻ {p, q} ⪰ {q} and {αp+ (1− α)r} ∼ {αp+ (1− α)r, αq + (1− α)r}
(∗∗) {p} ∼ {p, q} ≻ {q} and {αp+ (1− α)r} ≻ {αp+ (1− α)r, αq + (1− α)r}.

Let (u, v, c) be a general self-control model and⪰ the preference over menus
it represents. Noor and Takeoka (2015) show that

{p } ≻ {p , q } ⪰ {q } =⇒ v(q) > v(p)

{p′} ∼ {p′, q′} ≻ {q′} =⇒ v(p′) ≥ v(q′).

Hence, the rankings in (∗) imply

v(q) > v(p) and v(αp+ (1− α)r) ≥ v(αq + (1− α)r).

Thus, by linearity of v, v(q) > v(p) and v(q) ≤ v(p), an impossibility. Simi-
larly, the rankings in (∗∗) imply

v(p) ≥ v(q) and v(αq + (1− α)r) ≥ v(αp+ (1− α)r).

Hence, by linearity of v, v(q) ≥ v(p) and v(q) < v(p), another impossibility.

5.2 Mixture Monotone Preference for Commitment

Here we specialize the model by focusing on the preference for commitment.
In particular, we characterize two monotone patterns it can take under Com-
mitment Independence and an additional assumption. In the supplementary
appendix (Section S.5) we provide the corresponding results for the general
model.

Mixture-Increasing Preference for Commitment

For all p and x such that ⪰ has preference for commitment at
αx+ (1− α){p} for some α ∈ [0, 1]:
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I If {p} ≻ x, then ⪰ has preference for commitment at βx+(1−β){p}
for all 0 < β < α.

II If x ≻ {p}, then ⪰ has preference for commitment at βx+(1−β){p}
for all β > α.

Mixture-Increasing Preference for commitment restricts how preference for
commitment can vary along mixtures. Indeed, Part I implies that if ⪰ has
preference for commitment at x, then ⪰ has preference for commitment at any
mixture between x and a superior menu that offers commitment {p}. On the
other hand, Part II requires that if the agent has preference for commitment
at a mixture between a menu that offers commitment {p} and a superior menu
x, then increasing the weight on the superior menu does not affect preference
for commitment.

The special case of our model described in Section 3.3 satisfies this axiom
(see the online appendix for a proof). Hence, it is compatible with our mo-
tivating example. Recall that in the example, the agent had preference for
commitment at a mixture between {c, f} and the superior menu {f ′} but not
at {c, f}:

{αc+ (1− α)f ′} ≻ {αc+ (1− α)f ′, αf + (1− α)f ′}
{c} ∼ {c, f}.

Thus, the axiom only requires that the agent has preference for commitment
at {βc+ (1− β)f ′, βf + (1− β)f ′} for all 0 < β < α which is consistent with
the behavior prescribed by the model in Section 3.3.

To state the next result, we require some additional notation. Let p∗, p∗
denote a fixed pair of lotteries such that {p∗} ⪰ x ⪰ {p∗} for all x ∈ X . Given
our axioms such lotteries always exist.6

Theorem 5.1. Assume ⪰ satisfies the axioms of Proposition 4.1 and {p∗} ∼
{p∗, p∗}. Then ⪰ satisfies Mixture-Increasing Preference for Commitment if
and only if there exists (u, v) that represents ⪰ such that 0 < γ′ < γ < 1 implies
that there exists bγ,γ′ ∈ R such that v(., γ′) + bγ,γ′ is a convex combination of
u and v(., γ).

The assumption that {p∗} ∼ {p∗, p∗} implies that the agent does not expect
to be tempted by p∗ if she faces {p∗, p∗} in the second stage. This assumption
guarantees that for each γ ∈ [0, 1], v(., γ) is not a negative affine transformation

6Weak Order and Continuity imply that the ordering over singleton menus has a best
and worst menu. Thus, by Set-Betweenness, all finite menus are between these two menus
in terms of preference. Hence, by Continuity the same holds for any menu.
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of u. Theorem 5.1 shows that Mixture-Increasing Preference for Commitment
forces the following concrete relationship between u and v across different levels
of utility: as utility decreases, u and v(., γ) get “closer together”.

The following axiom characterizes the opposite case: as utility decreases,
u and v(., γ) move “further apart”.

Mixture-Decreasing Preference for Commitment

For all p and x such that ⪰ has preference for commitment at
αx+ (1− α){p} for some α ∈ [0, 1]:

I If x ≻ {p}, then ⪰ has preference for commitment at βx+(1−β){p}
for all 0 < β < α

II If {p} ≻ x, then ⪰ has preference for commitment at βx+(1−β){p}
for all β > α.

An agent modeled after this axiom would have mixture independent prefer-
ence for commitment when mixing with inferior menus that offer commitment.
Its interpretation is analogous to the interpretation of the previous axiom.

Part II of this axiom is inconsistent with the rankings in our motivat-
ing example. In particular, an agent that satisfies II that has preference for
commitment at {αc + (1 − α)f ′, αf + (1 − α)f ′} would have preference for
commitment at {c, f}. However, it can be motivated by similar examples. To
illustrate, consider again the traveler but assume now that she wishes to stay
at the fancy room but thinks that if she waits to choose the room until she
arrives at the hotel, then she will be tempted to choose the conventional room
to save money. Hence,

{f} ≻ {c, f}.

Assume she receives the same promotion as in the motivating example: her
name will be added to a raffle in which the prize is a free night in the fancy
room. The possibility of staying for free in the fancy room makes her dream
about it for the rest of the day. Hence, if she waits until she arrives to choose
the room, by then she will not find the cheap room tempting. Hence,

{αf + (1− α)f ′} ∼ {αc+ (1− α)f ′, αf + (1− α)f ′}.

This type of behavior is permitted by Mixture-Decreasing Preference for
Commitment. The reason is that this axiom is silent about behavior that in-
volves a mixture between a menu in which the agent has preference for commit-
ment ({c, f}) and a superior menu that offers commitment ({f ′}). However,
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it is inconsistent with Part I of Mixture-Increasing Preference for Commit-
ment. In particular, an agent that satisfies Part I of that axiom that has
preference for commitment at {c, f} would have preference for commitment at
{αc+ (1− α)f ′, αf + (1− α)f ′}.

Theorem 5.2. Assume ⪰ satisfies the axioms of Proposition 4.1 and {p∗} ∼
{p∗, p∗}. Then ⪰ satisfies Mixture-Decreasing Preference for Commitment if
and only if there exists (u, v) that represents ⪰ such that 0 < γ′ < γ < 1 implies
that there exists bγ,γ′ ∈ R such that v(., γ) + bγ,γ′ is a convex combination of u
and v(., γ′).

5.3 Consumption-Savings

While our model is a representation for an ex ante preference over menus, it
suggests that ex post choice is given by the choice correspondence defined by

c(x) = argmax
p∈x

{u(p, V (x)) + v(p, V (x))}.

We conclude the discussion of mixture-dependent preference for commitment
by providing some observations this choice correspondence in a consumption-
savings context. In particular, we illustrate how our model can accommodate
the behavior of an agent that is tempted to over-consume and under-save only
when her income is stochastic. This prediction of the model seems particularly
relevant to policymakers as it suggests that government programs that reduce
income risk may have an unintended positive effect: they alleviate the agent’s
demand for commitment by helping them make normatively optimal choices.

Consider an agent that lives throughout 3 periods (t = 0, 1, 2). There
is a single consumption good in period 1 and 2. We assume that the risk-
free rate and other rates of return are exogenous, and that the agent cannot
borrow against his second period income. Hence, it is WLOG to treat the
risk-free rate as if it were zero. Finally, we assume that first period income is
deterministic and equal to w1 and that the second-period income y is allowed
to be stochastic.

Consider the decision problem at t = 1 of an agent who exhibits mixture-
dependent preference for commitment and has linear normative preferences:

max
c≤w1

{E[U1(c) + U2(w1 − c+ y) + V (c, w1 − c+ y, γ)]

where U1 is the first period normative utility function, c the first period con-
sumption, E an expectation conditional on first-period information, U2 the
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second-period utility function, V is the temptation utility and γ is the unique
solution of

γ = max
c≤w1

{E[U1(c) + U2(w1 − c+ y) + V (c, w1 − c+ y, γ)]

− max
c′≤w1

V (c′, w1 − c+ y, γ)}.

If V is independent of γ, then the model reduces to GP. Hence, temptation
would affect the agent in the same way regardless of whether y is risky or
not. To be precise, the agent would be tempted to over-consume (under-
consume) and under-save (over-save) regardless of whether y is risky or not.
This is no longer true under mixture-dependent preference for commitment.
For instance, if V has the following form:

V (c1, c2, γ) =


U(c1) + U(c2) γ ≤ U(c1) + U(c2)

γ
U(c1)+U(c2)

U(c1) + U(c2) γ > U(c1) + U(c2)

the agent will only be tempted to over-consume only when her second period
income is risky. Hence, she would only demand commitment when her second
period income is stochastic.

6 Betweenness Mixture Space Theorem

In the introduction we discussed that one of the contributions of the paper
is to provide a novel extension of the main result of Herstein and Milnor
(1953), commonly known as the Mixture Space Theorem. Here we provide
our extension.

A mixture space is a non-empty set M which is endowed with an operation
π,

π : [0, 1]×M×M → M
(a, x, y) → πa(x, y),

where π satisfies the following three properties:

(A1) π1(x, y) = x.

(A2) πa(x, y) = π1−a(y, x) for all a ∈ [0, 1].

(A3) πa(πb(x, y), y) = πab(x, y) for all a, b ∈ [0, 1].

20



Basically, a mixture space is an abstract version of a convex set.
Let ⪰ be a binary relation over a mixture space (M, π). Consider the

following axioms:

Weak Order ⪰ is complete and transitive.

Continuity x ≻ y ≻ z implies that there exist a, b ∈ (0, 1) such that
πa(x, z) ≻ y ≻ πb(x, z).

Independence x ⪰ y implies πa(x, z) ⪰ πa(y, z) for all z ∈ M
and a ∈ [0, 1].

Theorem 6.1. (Mixture Space Theorem) Let ⪰ be a binary relation on a
mixture space (M, π). Then the following two statements are equivalent:

a) ⪰ satisfies Weak Order, Continuity and Independence.

b) There exists a utility function Φ : M → R that represents ⪰ such that

∀x, y ∈ M and a ∈ [0, 1], Φ(πa(x, y)) = aΦ(x) + (1− a)Φ(y). (4)

Further, Φ is unique up to a positive affine transformation.

Say that a function Φ : M → R is mixture-linear if it satisfies (4). The
Mixture Space Theorem provides necessary and sufficient conditions for a pref-
erence to have a mixture-linear utility representation. Our theorem character-
izes a representation where Φ instead conforms to an analogue of the Chew-
Dekel utility representation. However, it is less general than the Mixture Space
Theorem in the sense that it only applies to mixture spaces that satisfy the
following additional property:

(A4) πa(πb(x, y), z) = πab(x, πa(1−b)
1−ab

(y, z)) ∀a, b ∈ [0, 1] such that ab ̸= 1.

A4 requires that the order of the mixture does not matter. Hence, it is an
associative property. Thus we refer to any mixture space that satisfies A4
as an associative mixture space. Not all mixture spaces are associative (see
Mongin (2001) for an example). However, any space that is isomorphic to
a convex subset of a linear space is an associative mixture space (examples
include the frameworks employed in Anscombe and Aumann (1963), Dekel
et al. (2001) and the probability simplex). Not all associative mixture spaces
have this feature. In particular, Stone (1949) and Mongin (2001) show that
the missing ingredient is the following property.

(A5) For any a ∈ (0, 1) and x ∈ M, y 7→ πa(x, y) is injective.
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Theorem 6.2. (Stone-Mongin) Let (M, π) be an associative mixture space.
Then the following two statements are equivalent:

a) (M, π) satisfies A5.

b) (M, π) is isomorphic to a convex subset of a linear space.

Thus, even though our result is not as general as the Mixture Space Theorem,
it applies to settings that are more general than convex subsets of linear spaces.

In our version of the Mixture Space Theorem, we replace the Independence
axiom with the following two axioms.

Mixture-Betweenness
x ≻ y implies x ≻ πa(x, y) ≻ y for all a ∈ (0, 1), and
x ∼ y implies x ∼ πa(x, y) ∼ y for all a ∈ (0, 1).

Strict Best and Worst There exist x, x such that x ≻ x ≻ x for all x ∈
M\{x, x}.

To state our result we require some additional terminology. Say that a function
V : M → R ismixture-continuous if for all x, y ∈ M, V (πa(x, y)) is continuous
as a function of a.

Theorem 6.3. Let ⪰ be a non-trivial binary relation on an associative mixture
space (M, π). Then the following two statements are equivalent:

a) ⪰ satisfies Weak Order, Continuity, Mixture-Betweenness and Strict
Best and Worst.

b) There exists Φ : M× (0, 1) → R such that

1.- Φ is continuous in its second argument on the interval (0, 1).

2.- Φ is mixture linear in its first argument for all γ ∈ (0, 1).

3.- Φ(x, γ) = 1,Φ(x, γ) = 0 for all γ ∈ (0, 1).

4.- Φ(x, γ) = γ has a unique solution for all x ∈ M\{x, x}.
5.- ⪰ can be represented by a mixture-continuous function V : M →

[0, 1] such that

V (x) =


1 x = x,

Φ(x, V (x)) x ∈ X\{x, x},
0 x = x.

22



Further, Φ(., γ) is unique for all γ ∈ (0, 1).

Mixture-Betweenness is obviously weaker than Independence. However,
Strict Best and Worst is unrelated to Independence and limits the generality
of our theorem. In the supplemental appendix (Section S.1) we show that it
can be deleted if the associative mixture space is a compact and convex subset
of a linear space and Continuity is replaced with the following axiom.

Strong Continuity The sets {y|y ⪰ x} and {y|x ⪰ y} are closed for all
x ∈ M.

The proof of Theorem 6.3 is similar in spirit to the proofs in Chew (1989),
Dekel (1986) and Conlon (1995). However, they exploit properties of the prob-
ability simplex that have no evident analog in our framework. More specifi-
cally, Chew (1989) and Dekel (1986) use its geometric properties and Conlon
(1995) uses its topological properties. Hence, to prove the theorem we were
forced to develop novel arguments.

Due to its generality, Theorem 6.3 has several potential applications. In
particular, it can be used to derive a natural counterpart of Dekel (1986)
for the Anscombe-Aumann domain (Anscombe and Aumann (1963)). In this
setting with uncertainty as opposed to risk, the result is a non-standard model
of beliefs. More specifically, let Ω be a finite state space. Consider a preference
⪰ over F = {f : Ω → ∆(X)}, set of all AA acts. In ongoing work, we use
Theorem 6.3 as a stepping stone in the axiomatization of a representation for
⪰ in which the utility of an AA act f is the unique γ that solves

γ =

∫
Ω

u(f(ω))µ(dω, γ), (5)

where u is a vNM utility function over lotteries and µ(., γ) is a probability
measure over Ω for all γ.

In a separate project, we use our result to generalize Dekel et al. (2001)
and therefore also Kreps (1979). We derive a counterpart of (5) in which the
state space is subjective. In particular, we axiomatize a utility representation
for preferences over menus of lotteries in which the utility of a menu x is the
unique γ that solves

γ =

∫
S

sup
p∈x

u(p, s)µ(ds, γ),

where S is a non-empty set (subjective state space), u(., s) is a vNM utility
function over lotteries for all s ∈ S and µ(., γ) is a probability measure over S
for all γ.

23



Appendix A Mixture Space Theorem

A.1 Sufficiency

Lemma A.1. Let ⪰ be a binary relation over a Mixture Space (M, π) that
satisfies Weak Order, Continuity and Mixture-Betweenness. Then:

1. x ≻ y and 0 ≤ a < b ≤ 1 implies πb(x, y) ≻ πa(x, y).

2. For all x, y and z the following sets are closed:

{a|πa(x, y) ⪰ z} and {a|z ⪰ πa(x, y)}.

3. If x ≻ z ≻ y, then there exists a unique a ∈ (0, 1) such that z ∼ πa(x, y).

The proof of this lemma is provided in Appendix A.4. The argument for Part
2 is an adaptation to the one of Karni and Safra (2015).

Lemma A.1 shows that for each x ∈ M there exists a unique γ(x) ∈ [0, 1]
such that x ∼ πγ(x)(x, x). Define

V (x) ≡ γ(x).

Then, V is mixture-continuous and represents ⪰. Now we proceed with the
construction of Φ.

For each γ ∈ (0, 1), let xγ denote πγ(x̄, x) and I(γ) = {x|x ∼ xγ}. Our
goal is to construct a mixture-linear Φ(., γ) such that it represents an artificial
preference that has indifference curves that are “parallel” to I(γ). Informally,
x, y are in a “higher” artificial indifference curve parallel to I(γ) if πa(x, x) ∼ xγ

and πa(y, x) ∼ xγ. Figure 1 illustrates this idea.

Figure 1:
x

x

x
y

πa(x, x)

πa(y, x)

I(γ)
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Similarly, x, y are in a “lower” artificial indifference curve parallel to I(γ)
if πa(x, x) ∼ xγ and πa(y, x) ∼ xγ.

Consider the mapping λ : M× (0, 1) → [0, 1] given by

λ(x, γ) =


a|πa(x, x) ∼ xγ V (x) > γ

1 V (x) = γ

b|πb(x, x̄) ∼ xγ V (x) < γ.

By Lemma A.1, λ is well defined. λ can be used to define an artificial
preference that has indifference curves parallel to I(γ): if either x, y ≻ xγ or
xγ ≻ x, y, then x, y are in the same artificial indifference curve if and only if
λ(x, γ) = λ(y, γ). Φ(., γ) would represent such artificial preference. Hence,
mixture linearity of Φ(., γ) and the definition of λ would imply that if x ≻ xγ,

Φ(πλ(x,γ)(x, x), γ) = Φ(xγ, γ)

λ(x, γ)Φ(x, γ) = γ
γ

λ(x, γ)
= Φ(x, γ).

Similarly, if xγ ≻ x, then

Φ(x, γ) = 1− 1− γ

λ(x, γ)
.

Hence, Φ(., γ) most have the following form:

Φ(x, γ) ≡


γ

λ(x,γ)
V (x) > γ

γ V (x) = γ

1− 1−γ
λ(x,γ)

V (x) < γ.

Notice that Φ(x, γ) = γ if and only if V (x) = γ. Further,

V (x), V (y) ≥ γ =⇒ Φ(x, γ) ≥ Φ(y, γ) ⇐⇒ λ(x, γ) ≤ λ(y, γ)

V (x) ≥ γ ≥ V (y) =⇒ Φ(x, γ) ≥ Φ(y, γ)

V (x), V (y) ≤ γ =⇒ Φ(x, γ) ≥ Φ(y, γ) ⇐⇒ λ(x, γ) ≥ λ(y, γ).

We will show that Φ(., γ) is mixture linear and continuous in its second
argument. In our proof we employ the following lemma that describes several
properties of λ.

Lemma A.2. If ⪰ satisfies the axioms of Theorem 6.3, then λ satisfies the
following properties:
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1. V (x), V (y) ≥ γ =⇒ λ(πa(x, y), γ) =
λ(x,γ)λ(y,γ)

aλ(y,γ)+(1−a)λ(x,γ)
for all a ∈ [0, 1].

2. V (x), V (y) ≤ γ =⇒ λ(πa(x, y), γ) =
λ(x,γ)λ(y,γ)

aλ(y,γ)+(1−a)λ(x,γ)
for all a ∈ [0, 1].

3. V (x), V (y) > γ > V (z) and λ(x, γ) < λ(y, γ)
=⇒ λ(πa(x, z), γ) = λ(y, γ) for a unique a ∈ (0, 1).

4. V (x), V (y) < γ < V (z) and λ(x, γ) < λ(y, γ)
=⇒ λ(πa(x, z), γ) = λ(y, γ) for a unique a ∈ (0, 1).

5. V (x), V (y) > γ > V (z), λ(x, γ) = λ(y, γ) and πa(x, z) ∼ xγ

=⇒ πa(y, z) ∼ xγ.

6. V (x), V (y) < γ < V (z), λ(x, γ) = λ(y, γ) and πa(x, z) ∼ xγ

=⇒ πa(y, z) ∼ xγ.

The proof is provided in Appendix A.4. Here we provide two figures that
illustrate properties 3 (Figure 2) and 5 (Figure 3).

Notice that properties 1 and 2 imply that if x, y are both above or both
below I(γ) in terms of preferences, then

λ(πa(x, y), γ) = (aλ(x, γ)−1 + (1− a)λ(y, γ)−1)−1.

Hence, λ(πa(x, y), γ) is the harmonic weighted mean of λ(x, γ) and λ(y, γ).

Figure 2:

z

λ(πd(x, z), γ) = λ(y, γ)

πd(x, z)
x

x

x

y
I(γ)

Figure 3:

πb(x, z)

x

πb(y, z)
I(γ)

y

x

x

z

Φ(., γ) is Mixture Linear

Fix x, y ∈ X , γ ∈ (0, 1) and a ∈ (0, 1). Assume WLOG that V (x) ≥ V (y).
Then, by Mixture-Betweenness, V (x) ≥ V (πa(x, y)) ≥ V (y).
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There are four possible cases to consider:
(i) V (x) ≥ V (y) ≥ γ. (ii) γ ≥ V (x) ≥ V (y).
(iii) V (x) ≥ V (πa(x, y)) ≥ γ ≥ V (y). (iv) V (x) ≥ γ ≥ V (πa(x, y)) ≥ V (y).
Since the proofs of (i) and (ii) are analogous, and the proofs of (iii) and (iv)
are analogous we only consider (i) (Lemma A.3) and (iii) (Lemma A.4).

Lemma A.3. V (x), V (y) ≥ γ =⇒ Φ(πa(x, y), γ) = aΦ(x, γ)+(1−a)Φ(y, γ).

Proof. First note that if V (x) = V (y) = γ, then there is nothing to prove.
Assume V (x) > V (y) ≥ γ. Then, by Mixture-Betweenness, V (πa(x, y)) > γ.
Thus,

Φ(πa(x, y), γ) =
γ

λ(πa(x, y), γ)

=
γ

λ(x,γ)λ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

=
γ

λ(x, γ)λ(y, γ)
(aλ(y, γ) + (1− a)λ(x, γ))

= a
γ

λ(x, γ)
+ (1− a)

γ

λ(y, γ)

= aΦ(x, γ) + (1− a)Φ(y, γ).

where the second equality follows from Part 1 of Lemma A.2.

Lemma A.4. V (x) > γ > V (y) and V (πa(x, y)) ≥ γ =⇒
Φ(πa(x, y), γ) = aΦ(x, γ) + (1− a)Φ(y, γ).

Proof. Let b ∈ (0, 1) be such that

πb(x, y) ∼ xγ.

The proof of this lemma is done in two steps.
Step 1: Calculate Φ(πa(x, y), γ)

Figure 4 illustrates the argument for this step.
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Figure 4:
x

x

I(γ)
x

y

πa(x, y)

πb(x, y)

πc(x, πb(x, y))

πa(x, y) ⪰ xγ implies a ≥ b. Let c = a−b
1−b

≤ 1. We claim that πa(x, y) =
πc(x, πb(x, y)). To prove this claim note that

πc(x, πb(x, y)) = π1−c(π1−b(y, x), x)

= π(1−c)(1−b)(y, x)

= π1−(1−c)(1−b)(x, y).

Further,

1− (1− c)(1− b) = 1− (1− a− b

1− b
)(1− b)

= 1− (1− b− (a− b)))

= a.

Hence, πa(x, y) = πc(x, πb(x, y)). Since V (x), V (πb(x, y)) ≥ γ, by Part 1 of
Lemma A.2,

λ(πc(x, πb(x, y)), γ) =
λ(x, γ)

c+ (1− c)λ(x, γ)

=
λ(x, γ)

a−b
1−b

+ (1− a−b
1−b

)λ(x, γ)

= (1− b)
λ(x, γ)

(a− b) + (1− a)λ(x, γ)
.
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Therefore,

Φ(πa(x, y), γ) = Φ(πc(x, πb(x, y)), γ)

= γ
1

λ(πc(x, πb(x, y)), γ)

= γ
1

(1− b) λ(x,γ)
(a−b)+(1−a)λ(x,γ)

= γ
a− b+ (1− a)λ(x, γ)

(1− b)λ(x, γ)
.

Step 2: Calculate aΦ(x, γ) + (1 − a)Φ(y, γ) and show it is equal to
Φ(πa(x, y), γ)

To calculate aΦ(x, γ) + (1 − a)Φ(y, γ) we first need to derive the relation
between λ(y, γ), λ(x, γ), γ and b. In particular, we need to show that

λ(y, γ) =
(1− b)λ(x, γ)(γ − 1)

λ(x, γ)(γ − 1)− b(γ − λ(x, γ))
. (6)

To prove (6) we need to distinguish between two cases: (i) λ(x, γ) > λ(x, γ)
and (ii) λ(x, γ) ≤ λ(x, γ). The proof of both cases is analogous. Thus, we
only consider (i).

Figure 5:
x

x

I(γ)
x

y

πa(x, y)

πd(y, x)

πb(πd(y, x), y)

πb(x, y)

Figure 6:

πe(πλ(y,γ)(y, x), x)

πλ(y,γ)(y, x)

x

x

I(γ)

y

πd(y, x)

Assume λ(x, γ) > λ(x, γ). By Part 3 of Lemma A.2 there exists a unique
d ∈ (0, 1) such that λ(πd(y, x), γ) = λ(x, γ). First we show that λ(y, γ) =
1− b(1− d). Figure 5 illustrates the argument we use to prove this.
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By Part 5 of Lemma A.2, πb(πd(y, x), y) ∼ xγ. Further,

πb(πd(y, x), y) = πb(π1−d(x, y), y)

= πb(1−d)(x, y)

= π1−b(1−d)(y, x).

Hence πλ(y,γ)(y, x) = πb(πd(y, x), y) and λ(y, γ) = 1− b(1− d).
Next, we need to replace d in λ(y, γ) = 1 − b(1 − d) with eλ(y, γ) where

e = γ−λ(x,γ)
λ(x,γ)(γ−1)

. Figure 6 illustrates how we do this.

First we show that e ∈ (0, 1) and πd(y, x) = πe(πλ(y,γ)(y, x), x). To prove
this, first note that γ = λ(x, γ) so λ(x, γ) > λ(x, γ) and γ ∈ (0, 1) imply e > 0.
Further, λ(x, γ) ∈ (0, 1). Thus,

γ > λ(x, γ)γ

γ − λ(x, γ) > λ(x, γ)γ − λ(x, γ)

γ − λ(x, γ)

λ(x, γ)(γ − 1)
< 1.

Next, note that

πe(πλ(y,γ)(y, x), x) = πeλ(y,γ)(y, x).

Thus, by Part 1 of Lemma A.2,

λ(πe(πλ(y,γ)(y, x), x), γ) =
λ(x)

eλ(x, γ) + (1− e)
.

Notice that if e = γ−λ(x,γ)
λ(x,γ)(γ−1)

, then

πe(πλ(y,γ)(y, x), x) =
λ(x, γ)

( γ−λ(x,γ)
λ(x,γ)(γ−1)

)λ(x, γ) + γ(λ(x,γ)−1)
λ(x,γ)(γ−1)

=
γλ(x, γ)(γ − 1)

γ(γ − λ(x, γ)) + γ(λ(x, γ)− 1)

=
λ(x, γ)(γ − 1)

(γ − λ(x, γ)) + (λ(x, γ)− 1)

= λ(x, γ).
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Hence by the uniqueness in Part 3 of Lemma A.2, d = eλ(y, γ). Thus,

λ(y, γ) = 1− b(1− d)

= 1− b(1− eλ(y, γ))

=
1− b

1− be

=
(1− b)λ(x, γ)(γ − 1)

λ(x, γ)(γ − 1)− b(γ − λ(x, γ))
.

Finally, we finish the proof of this step by using (6) to show aΦ(x, γ)+(1−
a)Φ(y, γ) = Φ(πa(x, y)).

aΦ(x, γ) + (1− a)Φ(y, γ) = a
γ

λ(x, γ)
+ (1− a)(1− 1− γ

λ(y, γ)
)

= a
γ

λ(x, γ)

+ (1− a)(1− (1− γ)
λ(x, γ)(γ − 1)− b(γ − λ(x, γ))

(1− b)λ(x, γ)(γ − 1)
)

= a
γ

λ(x, γ)
+ (1− a)(1− (1− γ)

b(γ − λ(x, γ))− λ(x, γ)(γ − 1)

(1− b)λ(x, γ)(1− γ)
)

= a
γ

λ(x, γ)

+ (1− a)(
(1− b)λ(x, γ)− (b(γ − λ(x, γ))− λ(x, γ)(γ − 1))

(1− b)λ(x, γ)
)

= a
γ

λ(x, γ)
+

1− a

(1− b)λ(x, γ)
(λ(x, γ)γ − bγ)

=
γ

λ(x)(1− b)
(a− ab+ λ(x, γ)− b− aλ(x, γ) + ab)

= γ
(a− b) + λ(x, γ)(1− a)

λ(x, γ)(1− b)

= Φ(πa(x, y), γ).

Φ is continuous in its second argument

To show that Φ is continuous in its second argument it is enough to show that
λ is continuous in its second argument.

Lemma A.5. λ is continuous in its second argument.

31



Proof. Fix x ∈ M, γ ∈ (0, 1) and γn such that γn → γ. There are three
possible cases: (i) V (x) > γ, (ii) V (x) < γ and (iii) V (x) = γ. The proof of
the three cases is analogous. Hence, we only consider (ii).

Assume V (x) < γ. By standard arguments it is without loss to assume
γn > V (x) for all n. Let λn = λ(x, γn) and assume towards a contradiction
that λn ̸→ λ(x, γ). Then, there exists a neighborhood B(λ(x, γ)) such that
λn ̸∈ B(λ(x, γ)). Let λm denote the corresponding subsequence. Since λm

is a subsequence in [0, 1], there exists a convergent subsequence λl with limit
λ∗ ̸= λ(x, γ). Then, either πλ∗(x, x) ≻ πλ(x,γ)(x, x) or πλ(x,γ)(x, x) ≻ πλ∗(x, x).
The proof that either case leads to a contradiction is analogous. Hence, we
only consider the case in which πλ∗(x, x) ≻ πλ(x,γ)(x, x).

By Continuity there exists z such that πλ∗(x, x) ≻ z ≻ πλ(x,γ)(x, x). Fur-
ther, by Lemma A.1, there exists N such that l > N implies πλl

(x, x) ≻ z.
Since πλl

(x, x) ∼ πγl(x, x) for all l and πλ(x,γ)(x, x) ∼ xγ, then by Lemma A.1,
πγl(x, x) ≻ z for all l > N and γl → γ imply that πγ(x, x) ⪰ z, a contradic-
tion.

A.2 Necessity

Say that Φ represents ⪰ if it satisfies the conditions of Theorem 6.3. The proof
of necessity of Weak Order, Continuity and Strict Best and Worst is routine.
Hence, we only show that the representation satisfies Mixture-Betweenness.

Preliminaries

Lemma A.6. Assume Φ represents ⪰. Then for any x such that V (x) ∈ (0, 1),
the following two properties hold:

1. Φ(x, γ) < γ implies V (x) < γ.

2. Φ(x, γ) > γ implies V (x) > γ.

Proof. Assume towards a contradiction that there exists γ and x such that
V (x) ≥ γ and Φ(x, γ) < γ. If V (x) = γ, then by the unique solution property
Φ(x, γ) = γ, a contradiction. Thus, V (x) > γ. Since Φ(x, γ) < γ < 1, there
exists a ∈ (0, 1) such that aΦ(x, γ) + (1 − a) = γ. Hence, V (πa(x, x)) = γ <
V (x) < 1. Since V is mixture-continuous, there exists b ∈ (0, 1) such that
V (πb(x, x)) = V (x), Hence, V (x) = bΦ(x, V (x)) + (1 − b) = bV (x) + (1 − b),
a contradiction.

Property 2 Follows from an analogous argument, the only difference is that
one needs to use x instead of x to derive a contradiction.
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Next, we complete the proof. Showing that V (x) = V (y) implies V (x) =
V (πa(x, y)) = V (y) for all a ∈ (0, 1) is straight forward. Assume V (x) > V (y)
and let γ = V (πa(x, y)). Then

γ = aΦ(x, γ) + (1− a)Φ(y, γ).

Notice that if γ = V (x) or γ = V (y), then the unique solution property implies
a contradiction of V (x) > V (y). Further, by Lemma A.6,

γ > V (x) =⇒ γ > Φ(x, γ),Φ(y, γ)

γ < V (y) =⇒ γ < Φ(x, γ),Φ(y, γ).

In both cases γ = aΦ(x, γ) + (1− a)Φ(y, γ) does not have a solution. Hence,
γ ∈ (V (y), V (x)).

A.3 Uniqueness

Preliminaries

The proof will employ the following elementary lemma which states that if two
preferences satisfy Weak Order, Continuity, Independence, share an indiffer-
ence curve and rank two elements in the same way, one above the indifference
curve and one bellow, then they are equal.

Lemma A.7. Let ⪰ and ⪰′ be two binary relations on a Mixture Space (M, π)
that satisfy Weak Order, Continuity and Independence. Assume

1. {x|x ∼ πa(x, x)} = {x|x ∼′ πa(x, x)} for some a ∈ (0, 1).

2. x ≻ x and x ≻′ x.

Then ⪰=⪰′.

Proof. Assume towards a contradiction that there exist x, y such that x ≻ y
and y ⪰′ x. Since ⪰ is complete, then there are two possible cases: y ⪰
πa(x, x) and πa(x, x) ⪰ y. The proof that either case leads to a contradiction
is analogous. Hence, we only consider the case in which y ⪰ πa(x, x).

Assume y ⪰ πa(x, x). Then there exists b such that πb(y, x) ∼ πa(x, x).
Hence, πb(y, x) ∼′ πa(x, x). Since x ≻ y and y ⪰′ x, by Independence,

πb(x, x) ≻ πb(y, x) ∼ πa(x, x) and πa(x, x) ∼ πb(y, x) ⪰′ πb(x, x).

Thus, there exists c < b such that πc(x, x) ∼ πa(x, x) and πa(x, x) ≻′ πc(x, x)
a contradiction.
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Next, we complete the proof. First we show that if Φ and Φ′ represent ⪰, then
V = V ′. First note that

V (πγ(x, x)) = γ and V ′(πγ(x, x)) = γ

for all γ ∈ (0, 1). Hence, V (x) and V ′(x) are the unique γ such that x ∼
πγ(x, x). Thus, V = V ′.

To see that Φ = Φ′, let ⪰γ and ⪰γ′ be the preference represented by Φ(., γ)
and Φ′(., γ) respectively. Then,

{x|x ∼ πγ(x, x)} = {x|x ∼′ πγ(x, x)}.

Thus, by Lemma A.7, ⪰γ=⪰′
γ. By the Mixture Space Theorem, Φ(., γ) is the

unique mixture-linear representation of ⪰γ in which Φ(x, γ) = 1 and Φ(x, γ) =
0. Hence, Φ = Φ′.

A.4 Proofs of Lemma A.1 and A.2

Preliminaries

Lemma A.8. Assume (M, π) is an Associative Mixture Space. Then, for all
x, y, z ∈ M and a, b, c ∈ [0, 1] such that ca+ (1− c)b ̸= 0,

πc(πa(x, y), πb(z, y)) = πca+(1−c)b(π ca
ca+(1−c)b

(x, z), y).

Proof. Fix x, y, z ∈ M and a, b, c ∈ [0, 1] such that ca+ (1− c)b ̸= 0. Then,

πc(πa(x, y), πb(z, y)) = πca(x, π c(1−a)
1−ac

(y, πb(z, y))

= πca(x, π 1−c
1−ac

(πb(z, y), y)

= πca(x, π b(1−c)
1−ac

(z, y)

= πca+(1−c)b(π ca
ca+(1−c)b

(x, z), y)

Where the first inequality follows from (A4), the second from (A2), the third
from (A3) and the fourth from (A4).

Proof of Lemma A.1

Part 1: If a = 0 or b = 1, then Mixture-Betweenness implies πb(x, y) ≻
πa(x, y). Suppose 0 < a < b < 1. Then, there exists c ∈ (0, 1) such that cb = a.
Further, by Mixture-Betweenness, πb(x, y) ≻ y and πb(x, y) ≻ πc(πb(x, y), y) =
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πa(x, y).

Part 2: Fix x, y, z ∈ M and let A = {a|πa(x, y) ⪰ z}. WLOG assume
x ⪰ y. If A = ∅ or a singleton, then there is nothing to prove. Assume A ̸= ∅
and |A| > 1. Define a∗ = inf A. If a∗ ∈ A, then by Part 1 A = [a∗, 1]. Hence,
A is closed. Assume towards a contradiction that a∗ ̸∈ A. Thus, z ≻ πa∗(x, y).
Since |A| > 1, then x ≻ z ≻ πa∗(x, y). Hence, by Continuity, there exists b
such that

z ≻ πb(x, πa∗(x, y)) = π1−b(π(1−a∗)(y, x), x)

= π(1−b)(1−a∗)(y, x) = π1−(1−b)(1−a∗)(x, y).

Note that 1−(1−b)(1−a∗) = a∗+b(1−a∗) > a∗. Hence, z ≻ π1−(1−b)(1−a∗)(x, y)
and 1− (1− b)(1−a∗) > a∗, a contradiction of the fact that a∗ is the infimum.

The proof that {a|z ⪰ πa(x, y)} is closed is analogous, the only difference
is that instead of using the infimum to derive a contradiction, one needs to
use the supremum.

Part 3: Follows from Part 2.

Proof of Lemma A.2

The proofs of Parts 2, 4 and 6 are analogous to the proofs of Parts 1, 3 and 5
respectively. Hence, we only prove Parts 1, 3 and 5.

Part 1: Fix x, y such that V (x), V (y) ≥ γ and a ∈ (0, 1). Then, by Mixture-
Betweenness, V (πa(x, y)) ≥ γ. Further,

πλ(x,γ)(x, x) ∼ xγ ∼ πλ(y,γ)(y, x).

Hence, by Mixture-Betweenness, πc(πλ(x,γ)(x, x), πλ(y,γ)(y, x)) ∼ xγ for all c ∈
(0, 1). Notice that if for some c ∈ (0, 1)

πc(πλ(x,γ)(x, x), πλ(y,γ)(y, x)) = π λ(x,γ)λ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

(πa(x, y), x)

=⇒ λ(πa(x, y), γ) =
λ(x, γ)λ(y, γ)

aλ(y, γ) + (1− a)λ(x, γ)
.

Thus, it is enough to show that the first equality holds.
By Lemma A.8, for all c ∈ [0, 1]

πc(πλ(x,γ)(x, x), πλ(y,γ)(y, x)) = πcλ(x,γ)+(1−c)λ(y,γ)(π cλ(x,γ)
cλ(x,γ)+(1−c)λ(y,γ)

(x, y), x).
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In particular, if c = aλ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

, then

cλ(x, γ) + (1− c)λ(y, γ) =
aλ(y, γ)λ(x, γ)

aλ(y, γ) + (1− a)λ(x, γ)
+

(1− a)λ(x, γ)λ(y, γ)

aλ(y, γ) + (1− a)λ(x, γ)

=
λ(x, γ)λ(y, γ)

aλ(y, γ) + (1− a)λ(x, γ)

and

cλ(x, γ)

cλ(x, γ) + (1− c)λ(y, γ)
=

aλ(y,γ)λ(x,γ)
aλ(y,γ)+(1−a)λ(x,γ)

aλ(y,γ)λ(x,γ)
aλ(y,γ)+(1−a)λ(x,γ)

+ (1−a)λ(x,γ)λ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

= a.

Hence, πc(πλ(x,γ)(x, x), πλ(y,γ)(y, x)) = π λ(x,γ)λ(y,γ)
aλ(y,γ)+(1−a)λ(x,γ)

(πa(x, y), x).

Part 3: Fix x, y, z ∈ X such that V (x), V (y) > γ > V (z) and λ(x, γ) < λ(y, γ).
Let b ∈ (0, 1) be such that

πb(x, z) ∼ xγ.

Then, by Part 1,

λ(πa(x, πb(x, z))) =
λ(x, γ)

a+ (1− a)λ(x, γ)
.

Define ϕ(a) = λ(x,γ)
a+(1−a)λ(x,γ)

. Then, ϕ(0) = 1, ϕ(1) = λ(x) and ϕ′(a) < 0 for all

a ∈ (0, 1). Hence, there exists a unique a ∈ (0, 1) such that ϕ(a) = λ(y, γ).

Part 5: Let a1 and a2 be such that

xγ ∼ πa1(x, z) and xγ ∼ πa2(y, z).

Assume towards a contradiction that a2 > a1 (the case in which a1 > a2 is
analogous). Then, πa2(x, z) ≻ xγ and λ(πa2(x, z), γ) < 1. Since λ(x, γ) =
λ(y, γ), then by Part 1, for all c ∈ (0, 1)

λ(πc(x, πa2(y, z)), γ) = λ(πc(y, πa1(x, z)), γ).

However,

πc(x, πa2(y, z) = π1−c(πa2(y, z), x)

= π(1−c)a2(y, π (1−c)(1−a2)
1−(1−c)a2

(z, x))

= π(1−c)a2(y, π c
1−(1−c)a2

(x, z)).
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Thus, for c = a2
1+a2

,

πc(x, πa2(y, z) = π a2
1+a2

(y, πa2(x, z)) and πc(y, πa1(x, z)) = π a2
1+a2

(y, πa1(x, z)).

Therefore, λ(π a2
1+a2

(y, πa2(x, z)), γ) = λ(π a2
1+a2

(y, πa1(x, z)), γ) implies

λ(y, γ)λ(πa2(x, z))

c+ (1− c)λ(y, γ)
=

λ(y, γ)

c+ (1− c)λ(y, γ)

λ(πa2(x, z)) = 1,

a contradiction.

Appendix B Proof of Theorem 3.1

B.1 Sufficiency

∆(X) compact implies X is compact (Aliprantis and Border (2006), Theorem
3.71(3)). Let K(∆(X)) denote the set of all closed and convex menus of lot-
teries. By the Blaschke Selection Theorem (Schneider (2014) Theorem 1.8.5),
K(∆(X)) is compact.

Lemma B.1. K(∆(X)) is an associative mixture space.

Proof. By Lemmas S.2 and S.3 in Dekel et al. (2007), there exists a mixture
preserving bijection from K(∆(X)) to a convex subset of a linear space. Hence,
by Theorem 6.2, K(∆(X)) is an Associative Mixture Space.

Let p, p ∈ ∆(X) denote a fixed pair of lotteries such that {p} ⪰ x ⪰ {p}
for all x ∈ X . Given our axioms, such lotteries always exist (see footnote 4).
For each γ ∈ (0, 1), let {pγ} denote γ{p}+ (1− γ){p}.

Define V and Φ as in the proof of Theorem 6.3 using {p} and {p} as the
best and worst menus. Then, Φ(., γ) is mixture linear for all γ ∈ (0, 1) and,
Φ({p}, γ) = 1 and Φ({p}, γ) = 0 for all γ ∈ [0, 1]. Further, for all x such that
{p} ≻ x ≻ {p}, V (x) = γ is the unique solution of

γ = Φ(x, γ).

An identical argument to the one in the proof of Theorem S.1.1 in the supple-
mental material shows that Φ(., γ) and V are continuous for all γ ∈ (0, 1). In
what follows we will use Φ(., γ) to construct the representation in Theorem 3.1
for the case in which γ ∈ (0, 1). Afterwards we construct the representation
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for the case in which γ = 1 and γ = 0.

Step 1: Extend V and Φ(., γ) to X .
For each menu x ∈ X , let ch(x) denote its convex hull. Extend V by letting

V (x) = V (ch(x)) for all x ∈ X\K(∆(X)). We claim that V represents ⪰. To
prove this, it is enough to show that our axioms imply x ∼ ch(x) for all x ∈ X .

Lemma B.2. Let ⪰ be a binary relation over X that satisfies Weak Order,
Continuity and Mixture-Betweenness. Then x ∼ ch(x) for all x ∈ X .

Proof. Let K = |X| and assume, by way of contradiction, that there exists x
such that x ̸∼ ch(x). Then, by Mixture-Betweenness, αx+(1−α)ch(x) ̸∼ ch(x)
for all α ∈ (0, 1). This is a contradiction. In particular, Lemma S.6 in the
supplemental appendix of Dekel et al. (2007) shows that αx+ (1− α)ch(x) =
ch(x) for all α ∈ [0, 1

K
].

Extend Φ by letting Φ(x, γ) = Φ(ch(x), γ) for all x ∈ X\K(∆(X)). Then,

Φ(αx+ (1− α)y, γ) = Φ(ch(αx+ (1− α)y), γ)

= Φ(αch(x) + (1− α)ch(y), γ)

= αΦ(ch(x), γ) + (1− α)Φ(ch(y), γ)

= αΦ(x, γ) + (1− α)Φ(y, γ)

for all x, y ∈ X and α ∈ [0, 1]. Thus, the extension of Φ is also mixture linear
in its first argument and continuous in its second.

Finally, continuity of Φ(., γ) and V on X follows from the fact that for all
x, y ∈ X , dh(ch(x), ch(y)) ≤ dh(x, y).

Step 2: Show that Φ(., γ) satisfies Set-Betwenness.
Fix x, y ∈ X and γ ∈ (0, 1). Assume WLOG that Φ(x, γ) ≥ Φ(y, γ). There

are three possible cases: (i) Φ(x, γ) ≥ Φ(y, γ) ≥ γ. (ii) Φ(x, γ) ≥ γ ≥ Φ(y, γ).
(iii) γ ≥ Φ(x, γ) ≥ Φ(y, γ).

Since the proofs of (i) and (iii) are analogous, we only consider (i) and (ii).
(i) Φ(x, γ) ≥ Φ(y, γ) ≥ γ.

By Lemma A.6, V (x), V (y) ≥ γ. Thus, by Set-Betweenness, V (x∪ y) ≥ γ.
By construction, Φ(x, γ) ≥ Φ(y, γ) if and only if λ(x, γ) ≤ λ(y, γ) so

λ(x, γ)x+ (1− λ(x, γ)){p} ∼ {pγ} ⪰ λ(x, γ)y + (1− λ(x, γ)){p}.
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Hence, by Set-Betweenness,

λ(x, γ)x+ (1− λ(x, γ)){p}
⪰λ(x, γ)x+ (1− λ(x, γ)){p} ∪ λ(x, γ)y + (1− λ(x, γ)){p}
⪰λ(x, γ)y + (1− λ(x, γ)){p}.

However,

λ(x, γ)x+ (1− λ(x, γ)){p} ∪ λ(x, γ)y + (1− λ(x, γ)){p}
=λ(x, γ)(x ∪ y) + (1− λ(x, γ)){p}.

Thus,

{pγ} ⪰ λ(x, γ)(x ∪ y) + (1− λ(x, γ)){p}.

Hence, λ(x ∪ y, γ) ≥ λ(x, γ) so Φ(x, γ) ≥ Φ(x ∪ y, γ).
A similar argument shows that Φ(x∪ y, γ) ≥ Φ(y, γ), the only difference is

that one needs to use y (λ(y, γ)) instead of x (λ(x, γ)).

(ii) Φ(x, γ) ≥ γ ≥ Φ(y, γ).
By Lemma A.6, V (x) ≥ γ ≥ V (y). Hence, by Set-Betweenness,

V (x) ≥ V (x∪ y) ≥ V (y). There are two cases: V (x∪ y) ≥ γ or γ ≥ V (x∪ y).
If V (x ∪ y) ≥ γ, then, by Lemma A.6, Φ(x ∪ y, γ) ≥ Φ(y, γ). Hence, we

only need to show Φ(x, γ) ≥ Φ(x ∪ y, γ). By Mixture-Betweenness,

λ(x, γ)x+ (1− λ(x, γ)){p} ∼ {pγ} ⪰ λ(x, γ)y + (1− λ(x, γ)){p}.

Thus, by Set-Betweenness,

λ(x, γ)x+ (1− λ(x, γ)){p}
⪰λ(x, γ)x+ (1− λ(x, γ)){p} ∪ λ(x, γ)y + (1− λ(x, γ)){p}
⪰λ(x, γ)y + (1− λ(x, γ)){p}.

However,

λ(x, γ)x+ (1− λ(x, γ)){p} ∪ λ(x, γ)y + (1− λ(x, γ)){p}
=λ(x, γ)x ∪ y + (1− λ(x, γ)){p}.

Therefore,

λ(x, γ)x+ (1− λ(x, γ)){p}
⪰λ(x, γ)x ∪ y + (1− λ(x, γ)){p}

⪰ λ(x, γ)y + (1− λ(x, γ)){p}.
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Hence, λ(x ∪ y, γ) ≥ λ(x, γ) so Φ(x, γ) ≥ Φ(x ∪ y, γ).
A similar argument establishes that if γ ≥ V (x ∪ y), then Φ(x, γ) ≥

Φ(x ∪ y, γ) ≥ Φ(y, γ). The only difference is that if γ ≥ V (x ∪ y), then,
by Lemma A.6, Φ(x, γ) ≥ Φ(x∪ y, γ). Therefore, one only needs to show that
Φ(x ∪ y, γ) ≥ Φ(y, γ). An analogous argument to the previous one in which
λ(x, γ) is replaced by λ(y, γ) proves that Φ(x ∪ y, γ) ≥ Φ(y, γ).

Step 3: Show that there exists u(., γ) and v(., γ) such that for all
γ ∈ (0, 1) and x ∈ X ,

Φ(x, γ) = max
p∈x

{u(p, γ) + v(p, γ)−max
q∈x

v(q, γ)}.

Restrict ⪰ to ∆(X), then by Proposition 1 in Dekel (1986) there exists a
unique u : ∆(X)× (0, 1) → R such that u(., γ) is a vNM utility function for all
γ ∈ (0, 1), u is continuous in its second argument on the open interval (0, 1),
u(p, γ) = 1, u(p, γ) = 0 and V ({p}) is the unique γ ∈ [0, 1] that solves

γ = u(p, γ).

Hence, Φ({p}, γ) = u(p, γ) for all p ∈ ∆(X) and γ ∈ (0, 1).
By Lemmas 2, 4 and 5 in GP, there exists a vNM function v(., γ) such that

Φ(x, γ) = max
p∈x

{u(p, γ) + v(p, γ)−max
q∈x

v(q, γ)}

for all x ∈ X .

Step 4: Construct v(., 1) and v(., 0).
The construction of v(., 0) and v(., 1) are analogous. Thus, we only show

the latter and specify how to adapt the argument for the former. Since ⪰
satisfies Set-Betweenness, we will restrict our attention to binary menus. Our
construction of v(., 1) is similar to the construction in the proof of Theorem 2
of Noor and Takeoka (2015).

Let P = {p|{p} ⪰ {q} for all q}. There are two possible cases: (i)
{p} ∼ {p, q} for all p ∈ P , q ∈ ∆(X) and (ii) there exist p ∈ P and q ∈ ∆(X)
such that {p} ≻ {p, q}.

(i) {p} ∼ {p, q} for all p ∈ P , q ∈ ∆(X)
Let v(., 1) = 0. Then, max

p∈{p,q}
u(p, 1) = 1 if and only if p ∈ P or q ∈ P .

Hence,

max
p′∈{p,q}

u(p, 1) = 1 if and only if V ({p, q}) = 1.

40



(ii) There exist p ∈ P and q ∈ ∆(X) such that {p} ≻ {p, q}
Define ⪰T over ∆(X) as follows

p ⪰T q if and only if {p} ∼ {p, q} ≻ {q} and p ∈ P
q ≻T p if and only if {p} ≻ {p, q} and p ∈ P .

We will show that there exists a vNM utility function v(., 1) such that
p ⪰T q implies v(p, 1) ≥ v(q, 1) and q ≻T p implies v(q, 1) > v(p, 1). We claim
that if such function exists, then

1 = max
p′∈{p,q}

{u(p′, 1) + v(p′, 1)− max
q′∈{p,q}

v(q′, 1)} if and only if V ({p, q}) = 1.

To prove this, let

Φ(x, 1) = max
p∈x

{u(p, 1) + v(p, 1)−max
q∈x

v(q, 1)}.

First, assume V ({p, q}) = 1. If p, q ∈ P , then u(p, 1) = u(q, 1) = 1. Then
Φ({p, q}, 1) = 1 because Φ({p}, 1) = Φ({q}, 1) = 1 and Φ(., 1) satisfies Set-
Betweenness. If p ∈ P and q ̸∈ P , then {p, q} ≻ {q}. Hence, by construction,
v(p, 1) ≥ v(q, 1). Thus, Φ({p, q}, 1) = u(p, 1) = 1. Finally, note that if
p, q ̸∈ P , then, by Set-Betweenness, V ({p, q}) < 1.

Next, assume 1 = Φ({p, q}, 1). Since v(p′, 1) − max
q′∈{p,q}

v(q′, 1) ≤ 0 and

u(p, 1) ≤ 1, then 1 = Φ({p, q}, 1) implies that p ∈ P or q ∈ P . If p, q ∈ P ,
then V ({p}) = V ({q}) = 1 so by Set-Betweenness V ({p, q}) = 1. Assume
towards a contradiction that p ∈ P , q ̸∈ P and V ({p, q}) < 1. Then, q ≻T p
so v(q, 1) > v(p, 1). Further, p ∈ P implies u(p, 1) = 1. Hence, Φ(x, 1) < 1 a
contradiction.

Finally, we will show that such vNM utility function exists.
Let 0 denote the zero vector and T = cl({

∑n
i=1 λi(pi − qi)|n ∈ N, λi > 0

and pi ≻ qi or pi ⪰T qi for i = 1, ..., n}). By Lemma 2 in Fishburn (1975),
there exists v(., 1) such that p ≻T q implies v(p, 1) > v(q, 1) and p ⪰T q implies
v(p, 1) ≥ v(q, 1) if 0 ̸∈ T . We prove this in three steps.

Step 4.1: Show that if {pt} ∼ {pt, qt} for t = 1, ..., n and pt ∈ P for all
t, then {

∑n
t λtpt} ∼ {

∑n
t λtpt,

∑n
t λtqt} for all λ ∈ ∆({1, ..., n}).

The proof is by induction. Fix p1, p2 ∈ P such that {p1} ∼ {p1, q1} and
{p2} ∼ {p2, q2}. By Mixture-Betweenness, {λp1+(1−λ)p2} ⪰ x for all x ∈ X .
Assume towards a contradiction that {λp1+(1−λ)p2} ≻ {λp1+(1−λ)p2, λq1+
(1− λ)q2}.
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By Mixture-Betweenness,

{p2, q2} ≻ {λq1 + (1− λ)p2, λq1 + (1− λ)q2}
{p1, q1} ≻ {λp1 + (1− λ)q2, λq1 + (1− λ)q2}.

Thus, by Set-Betweenness,

{p2, q2} ≻ {λq1 + (1− λ)p2, λq1 + (1− λ)q2, λp1 + (1− λ)q2}.

Assume WLOG that

{λq1 + (1− λ)p2, λq1 + (1− λ)q2, λp1 + (1− λ)q2}
⪰{λp1 + (1− λ)p2, λq1 + (1− λ)q2}.

Thus, By Set-Betweenness,

{p2, q2} ≻ {λq1 + (1− λ)p2, λq1 + (1− λ)q2, λp1 + (1− λ)q2, λp1 + (1− λ)p2}.

However,

{λq1 + (1− λ)p2, λq1 + (1− λ)q2, λp1 + (1− λ)q2, λp1 + (1− λ)p2}
=λ{p1, q1}+ (1− λ){p2, q2},

a contradiction.
Induction step: Suppose the result is true for n. We will now show it holds

for n+ 1.
Fix pt ∈ P such that pt ∼ {pt, qt} for all t = 1, ..., n + 1. By the induc-

tion hypothesis {
∑n

t=1
λt∑n
t λt

pt} ∼ {
∑n

t=1
λt∑n
t λt

pt,
∑n

t=1
λt∑n
t λt

qt}. Hence, by the

base case, {
∑n+1

t=1 λtpt} ∼ {
∑n+1

t=1 λtpt,
∑

t λtqt} .

Step 4.2: Show that if {pt} ≻ {pt, qt} t = 1, ..., n and pt ∈ P for all t,
then {

∑n
t=1 λtpt} ≻ {

∑n
t=1 λtpt,

∑
t λtqt} for all λ ∈ ∆({1, ...., n}).

The proof is by induction. Fix p1, p2 ∈ P and λ ∈ [0, 1] such that {p1} ≻
{p1, q1} and {p2} ≻ {p2, q2}. By Mixture-Betweenness, {λp1 + (1 − λ)p2} ⪰
{λp1 + (1 − λ)p2, λq1 + (1 − λ)q2}. Assume towards a contradiction that
{λp1 + (1 − λ)p2} ∼ {λp1 + (1 − λ)p2, λq1 + (1 − λ)q2}. First note that
if

{λp1 + (1− λ)p2, q2} ∼ {p2},

42



then by the previous step,

{λp1 + (1− λ)p2, λp1 + (1− λ)q2} ∼ {p2}.

However

{λp1 + (1− λ)p2, λp1 + (1− λ)q2} = λ{p1}+ (1− λ){p2, q2} ≺ {p2},

a contradiction. Similarly, if

{λp1 + (1− λ)p2, q1} ∼ {p1},

by the previous step,

{λp1 + (1− λ)p2, λq1 + (1− λ)p2} ∼ {p1}.

However,

{λp1 + (1− λ)p2, λq1 + (1− λ)p2} = λ{p1, q1}+ (1− λ){p2} ≺ {p1},

a contradiction. Hence,

{λp1 + (1− λ)p2} ≻ {λp1 + (1− λ)p2, q1}, {λp1 + (1− λ)p2} ≻ {λp1 + (1− λ)p2, q2}
and {λp1 + (1− λ)p2} ∼ {λp1 + (1− λ)p2, λq1 + (1− λ)q2}.

Let p = λp1 + (1− λ)p2. By continuity, there exists α > λ > β such that

{p} ≻ {p, αq1 + (1− α)q2} ∼ {p, βq1 + (1− β)q2}.

Let ν be such that

ν(αq1 + (1− α)q2) + (1− ν)(βq1 + (1− β)q2) = λq1 + (1− λ)q2.

Then, by Mixture-Betweenness,

{p, αq1 + (1− α)q2} ∼ ν{p, αq1 + (1− α)q2}+ (1− ν){p, βq1 + (1− β)q2}
∼ {p, βq1 + (1− β)q2}.

However,

ν{p, αq1 + (1− α)q2}+ (1− ν){p, βq1 + (1− β)q2}
={p, λq1 + (1− λ)q2, νp+ (1− ν)(βq1 + (1− β)q2), ν(αq1 + (1− α)q2) + (1− ν)p}
={p, λq1 + (1− λ)q2} ∪ [ν{p}+ (1− ν){p, βq1 + (1− β)q2}]
∪ [(1− ν){p}+ ν{p, αq1 + (1− α)q2}].

43



Notice that

{p, λq1 + (1− λ)q2} ≻ {p, αq1 + (1− α)q2}
ν{p}+ (1− ν){p, βq1 + (1− β)q2} ≻ {p, βq1 + (1− β)q2}
(1− ν){p}+ ν{p, αq1 + (1− α)q2} ≻ {p, αq1 + (1− α)q2}

So by Set-Betweenness,

ν{p, αq1 + (1− α)q2}+ (1− ν){p, βq1 + (1− β)q2} ≻ {p, αq1 + (1− α)q2}
∼ {p, βq1 + (1− β)q2},

a contradiction of Mixture-Betweenness.
Induction step: Suppose the result is true for n. We will show it is true for

n+ 1.
Fix pt ∈ P such that {pt} ≻ {pt, qt} for t = 1, ..., n + 1. By the induc-

tion hypothesis {
∑n

t=1
λt∑n
t λt

pt} ≻ {
∑n

t=1
λt∑n
t λt

pt,
∑n

t=1
λt∑n
t λt

qt}. Hence, by the

base case, {
∑

t λtpt} ≻ {
∑

t λtpt,
∑

t λtqt}.

Step 4.3: show that 0 ̸∈ T .
We only show that 0 ̸∈ int(T ) because Continuity implies that if 0 ̸∈

int(T ), then 0 ̸∈ T .
Fix w ∈ T , then

w =
n∑

t=1

λtpt +
N∑

t=n+1

λtq
′
t −

n∑
t=1

λtqt −
N∑

t=n+1

λtp
′
t

where pt ∈ P , {pt} ∼ {pt, qt} for t = 1, ..., n and p′t ∈ P , {p′t} ≻ {p′t, q′t} for
t = n+ 1, ..., N , and λt > 0 for all t. Let

p =
∑
t

λt∑N
t=1 λt

pt and p′ =
N∑

t=n+1

λt∑N
t=1 λt

p′t,

q =
n∑

t=1

λt∑N
t=1 λt

qt and q′ =
N∑

t=n+1

λt∑N
t=1 λt

q′t.

Assume w = 0. Let λ∗ =
∑n

t=1
λt∑N
t=1 λt

. Then, λ∗p+(1−λ∗)q′ = λ∗q+(1−λ∗)p
′.

Note that by steps 4.1 and 4.2, {p} ∼ {p, q} and {p′} ≻ {p′, q′}. Hence, by
Mixture-Betweenness,

{λ∗p+ (1− λ∗)p′} ≻ λ∗{p}+ (1− λ∗){p′, q′}
= {λ∗p+ (1− λ∗)p′, λ∗p+ (1− λ∗)q′}
= {λ∗p+ (1− λ∗)p′, λ∗q + (1− λ∗)p′}
= λ∗{p, q}+ (1− λ∗){p′} ∼ {λ∗p+ (1− λ∗)p′},
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a contradiction.
To conclude the proof we outline the construction of v(., 0). Let Q =

{q ∈ ∆(X)|{p} ⪰ {q} for all p ∈ ∆(X)}. There are two possible cases: (i)
{p, q} ∼ {q} for all p ∈ ∆(X) and q ∈ Q, and (ii) there exist p ∈ ∆(X) and
q ∈ Q such that {p, q} ≻ {q}.

(i) {p, q} ∼ {q} for all p ∈ ∆(X) and q ∈ Q
Let v(., 0) = −u(., 0). Then,

max
p′∈{p,q}

{u(p′, 0) + v(p′, 0)− max
q′∈{p,q}

v(q′, 0)} = min
p′∈{p,q}

u(p′, 0).

Further,

min
p′∈{p,q}

u(p′, 0) = 0 ⇐⇒ p ∈ Q or q ∈ Q ⇐⇒ V ({p, q}) = 0.

(ii) There exist p ∈ ∆(X) and q ∈ Q such that {p, q} ≻ {q}
Define ⪰T over ∆(X) as follows:

q ⪰T p if and only if {p} ≻ {p, q} ∼ {q} and q ∈ Q
p ≻T q if and only if {p, q} ≻ {q} and q ∈ Q.

An identical argument to the one in the construction of v(., 1) shows there
exists v′ such that p ⪰T q implies v′(p) ≥ v′(q), p ≻T q implies v′(p) > v(q).
Let v(., 0) = −u(., 0) + v′, we will now show that

0 = max
p′∈{p,q}

{u(p, 0) + v(p, 0)− max
q′∈{p,q}

v(q, 0)} if and only if V ({p, q}) = 0.

(7)

To prove this, let

Φ(x, 0) = max
p∈x

{u(p, 0) + v(p, 0)−max
q∈x

v(q, 0)}.

First, assume V ({p, q}) = 0. If p, q ∈ Q, then u(p, 0) = u(q, 0) = 0. Thus, by
Set-Betweenness, Φ({p, q}, 0) = 0. If q ∈ Q and p ̸∈ P , then, by construction,
−u(q, 0) > −u(p, 0) and v(q, 0) ≥ v(p, 0). Thus, Φ({p, q}) is equal to

v′(q)− v′(q) + u(q, 0) = u(q, 0) = 0.

Hence, Φ({p, q}, 0) = 0. Finally, note that if p, q ̸∈ Q, then V ({p, q}) > 0.
Next, assume towards a contradiction that Φ({p, q}, 0) = 0 and V ({p, q}) >

0. If p, q ̸∈ Q, then u(p, 0) > 0 and u(q, 0) > 0. Hence, by Set-Betweenness,

45



Φ({p, q}, 0) > 0. Therefore, either p ∈ Q or q ∈ Q. If p, q ∈ Q, then V ({p}) =
V ({q}) = 0. Hence, by Set-Betweenness, V ({p, q}) = 0 a contradiction. If
q ∈ Q and p ̸∈ Q, then V ({p, q}) > 0 implies v′(p) > v′(q). Hence, Φ({p, q}, 0)
is equal to either v′(p) − v′(q) or u(p, 0). Either way, Φ({p, q}, 0) ̸= 0, a
contradiction.

B.2 Necessity

The proof of necessity of Weak Order and Hausdorff Continuity is routine. Fur-
ther, the proof of necessity of Mixture-Betwenness is identical to to the proof
given in Appendix A. Hence, we only show that the representation satisfies
Set-Betweenness.

Assume (u, v) represent ⪰. Fix x, y such that V (x) ≥ V (y),

pz ∈ argmax
p∈z

{u(p, V (z)) + v(p, V (z))} and qz ∈ argmax
q∈z

v(q, V (z))

for z ∈ {x, y, x∪y}. Then, by the unique solution property, V (z) = V ({pz, qz})
for all z ∈ {x, y, x ∪ y}.

There are 4 possible cases: (i) px∪y, qx∪y ∈ x. (ii) px∪y, qx∪y ∈ y. (iii)
px∪y ∈ x\y, qx∪y ∈ y\x. (iv) px∪y ∈ y\x, qx∪y ∈ x\y.

If px∪y, qx∪y ∈ x, then V (x) = V (x ∪ y) and if px∪y, qx∪y ∈ y, then
V (x ∪ y) = V (y). Hence we only consider cases (iii) and (iv).

(iii) px∪y ∈ x\y, qx∪y ∈ y\x.
By definition of px∪y and qx∪y,

V (x) ≥ max
p∈{px∪y ,qx}

{u(p, V (x)) + v(p, V (x))} − max
q∈{px∪y ,qx}

v(q, V (x))

V (x ∪ y) ≤ max
p∈{px∪y ,qx}

{u(p, V (x ∪ y)) + v(p, V (x ∪ y))} − max
q∈{px∪y ,qx}

v(q, V (x ∪ y))

V (x ∪ y) ≥ max
p∈{py ,qx∪y}

{u(p, V (x ∪ y)) + v(p, V (x ∪ y))} − max
q∈{py ,qx∪y}

v(q, V (x ∪ y))

V (y) ≤ max
p∈{py ,qx∪y}

{u(p, V (y)) + v(p, V (y))} − max
q∈{py ,qx∪y}

{v(q, V (y)).

Therefore, by Lemma A.6, V (x) ≥ V ({px∪y, qx}) ≥ V (x∪y) ≥ V ({py, qx∪y}) ≥
V (y) so V (x) ≥ V (x ∪ y) ≥ V (y).

(iv) px∪y ∈ y\x, qx∪y ∈ x\y.
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In this case, by definition of px∪y and qx∪y,

V (y) ≥ max
p∈{px∪y ,qy}

{u(p, V (y)) + v(p, V (y))} − max
q∈{px∪y ,qy}

v(q, V (y))

V (x ∪ y) ≤ max
p∈{px∪y ,qy}

{u(p, V (x ∪ y)) + v(p, V (x ∪ y))} − max
q∈{px∪y ,qy}

v(q, V (x ∪ y))

V (x ∪ y) ≥ max
p∈{px,qx∪y}

{u(p, V (x ∪ y)) + v(p, V (x ∪ y))} − max
q∈{px,qx∪y}

v(q, V (x ∪ y))

V (x) ≤ max
p∈{px,qx∪y}

{u(p, V (x)) + v(p, V (x))} − max
q∈{px,qx∪y}

v(q, V (x))

Hence, Lemma A.6 implies that V (y) ≥ V ({px∪y, qy}) ≥ V (x ∪ y) ≥
V ({px, qx∪y}) ≥ V (x) ≥ V (y) so V (x) = V (x ∪ y) = V (y).

B.3 Uniqueness

Sufficiency is given in the text. Here we prove necessity.
Assume (u, v) and (u′, v′) represent ⪰. Fix γ ∈ (0, 1) and let Φ(., γ) and

Φ(., γ′) denote the GP functionals induced by (u(., γ), v(., γ)) and (u(., γ′), v(., γ′))
respectively.

By an identical argument to the one in the uniqueness part of Theorem
6.3, Φ(x, γ) = Φ′(x, γ) for all x ∈ K(∆(X)) and γ ∈ (0, 1). In particular,
Φ({p}, γ) = Φ′({p}, γ) for all p ∈ ∆(X) and γ ∈ (0, 1). Hence, u = u′. Fix
γ ∈ (0, 1). If v(., γ) is a constant or a positive affine transformation of u(., γ).
Then,

Φ′(x, γ) = max
p∈x

{u(p, γ)}

for all x ∈ X. Thus, by GP (p. 1414), either v′(., γ) is a constant or a positive
affine transformation of u(., γ).

If v(., γ) is not a constant or a positive affine transformation of u(., γ).
Then, by GP (p.1414), there are two cases: either there exist p, q such that
Φ({p}, γ) > Φ({p, q}, γ) > Φ({q}, γ) or Φ({p}, γ) > Φ({p, q}, γ) = Φ({q}, γ)
for all p, q such that Φ({p}, γ) > Φ({q}, γ). If there exist p, q such that
Φ({p}, γ) > Φ({p, q}, γ) > Φ({q}, γ), then since u(., γ) is unique, by GP’s
Theorem 4, v′(., γ) = v(., γ) + bγ. If Φ({p}, γ) > Φ({p, q}, γ) = Φ({q}, γ)
for all p, q such that Φ({p}, γ) > Φ({q}, γ), then by GP (p.1414), v(., γ) and
v′(., γ) are negative affine transformation of u(., γ). Hence, we only need to rule
out the case in which v(., γ) = −aγu(., γ)+ bγ and aγ ∈ (0, 1). To see that this
is impossible let pγ be such that γ = u(pγ, γ). Then, u(p, γ) = 1 > u(pγ, γ).
Hence, Φ({pγ, p}, γ) = γ. However, if aγ < 1, then

u(p, γ)− aγu(p, γ) = 1− aγ > u(pγ, γ)− aγu(pγ, γ) = γ − aγγ.
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Hence,

Φ({pγ, p}, γ) = 1− aγ + aγγ ̸= γ.

Therefore, aγ ≥ 1.

B.4 Proof of Proposition 4.1

Necessity is straightforward. Here we prove sufficiency. Recall that for any p,
V (p) is the unique scalar γ such that

{p} ∼ γ{p}+ (1− γ){p}.
Fix γ ∈ (0, 1) and let ⪰γ be the preference over lotteries represented by u(., γ).
Note that {{p}|{p} ∼γ γ{p}+ (1− γ){p}} = {{p}|{p} ∼ γ{p}+ (1− γ){p}}.
Further, u(p, γ) = 1 > u(p, γ) = 0. Hence, by Lemma A.7, for the restriction
of ⪰ to singleton menus, ⪰γ=⪰ for all γ ∈ (0, 1). By the vNM Expected
Utility Theorem, there exists a unique expected utility function u∗ such that
u∗ represents the restriction of ⪰ to singleton menus, u∗(p) = 1 and u∗(p) = 0.
Hence u∗ = u(., γ) for all γ ∈ (0, 1). Finally, by continuity, u(., 1) = u(., 0) =
u∗.

B.5 Proof of Proposition 5.1

Let (u, v, c) represent ⪰. Then, by Theorem 1 in Noor and Takeoka (2010), ⪰
satisfies Commitment Independence and Set-Betweenness. In what follows we
will use the following property of c (Noor and Takeoka (2010 p.134)):

4. c(p, v(p)) = 0 for all p ∈ ∆(X). For any menu z, let qz denote an
arbitrary element of argmax

p∈x
v(p).

Part 1
Assume towards a contradiction that ⪰ has preference for commitment

at x but not at αx + (1 − α)y. Then, there exist px ∈ argmax
p∈x

u(p) and

py ∈ argmax
p∈y

u(p) such that

c(αpx + (1− α)py, αv(qx) + (1− α)v(qy)) = 0.

Further, since ⪰ has preference for commitment at x, c(px, v(qx)) > 0 and
u(px) > u(qx). Hence, by Property 2, v(qx) > v(px). Therefore,

u(αpx + (1− α)py) > u(αqx + (1− α)qy)

and

v(αqx + (1− α)qy) > v(αpx + (1− α)py).
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Thus, by Property 3, c(αpx + (1− α)py, αv(qx) + (1− α)v(qy)) > 0 a contra-
diction.

Part 2
Assume towards a contradiction that ⪰ does not have preference for com-

mitment at x and y but has preference for commitment at αx+(1−α)y. Then,
there exist px ∈ argmax

p∈x
u(p) and py ∈ argmax

p∈y
u(p) such that c(px, v(qx)) = 0

and c(py, v(qy)) = 0. Since ⪰ has preference for commitment at αx+(1−α)y,
then c(αpx + (1 − α)py, αv(qx) + (1 − α)v(qy)) > 0. Hence, by Property 2,
αv(qx) + (1− α)v(qy) > αv(px) + (1− α)v(py). Thus, either v(qx) > v(px) or
v(qy) > v(py). Since the proof that v(qy) > v(py) leads to a contradiction is
analogous to the proof that v(qx) > v(px) leads to a contradiction, we only
consider the case in which v(qx) > v(px).

By Property 2, v(qx) > v(px) implies u(qx) = u(px). Further, by Property
4, αu(px) + (1 − α)u(py) > αu(qx) + (1 − α)u(qy). Hence, u(py) > u(qy).
Therefore, it must be the case that c(αqx+(1−α)py, αv(qx)+(1−α)v(py)) > 0.
Thus, by Property 2,

αv(qx) + (1− α)v(py) > v(αqx + (1− α)py)

a contradiction.

B.6 Mixture Monotone Preference for Commitment with-
out Commitment Independence

The proof of Theorems 5.1 and 5.2 are analogous. Thus, we only show the
proof of the latter. Further, the proof of necessity is identical to the one of
Theorem S.5.2 in the online appendix. Hence, we only show sufficiency of the
axioms.

Sufficiency

Let (u, v′) be the representation of ⪰ constructed using {p∗} and {p∗} as the
best and worst menus. Then, p = p∗ and p = p∗. By the uniqueness properties
of (u, v′) there exists v such that if v′(., γ) is a constant or a positive affine
transformation of u(.), then v(., γ) = u(.) and (u, v) represents ⪰. Let ⪰γ

be the preference over menus represented by the GP functional induced by
(u(.), v(., γ)).

An identical argument to the one in the proof of Theorem S.5.2 in the
online appendix establishes that v(., γ) is not a negative affine transformation
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of u(.) and that if ⪰γ has preference for commitment at y and 1 > γ > γ′ > 0,
then ⪰γ′ also has preference for commitment at y.

Fix γ ∈ (0, 1). If ⪰γ does not have preference for commitment, then
u = v(., γ). Therefore, v(., γ) is a convex combination of u and v(., γ′). If
⪰γ has preference for commitment at some menu, then by Theorems 4 and 8
in GP, there exists a joint positive affine transformation of (u(.), v(., γ)) such
that v(., γ) is a convex combination of u(.) and v(., γ′).78

To conclude, notice that if the coefficient multiplying u(.) of the joint affine
transformation of (u, v(., γ)) is not equal to 1, then v(., γ) is an affine trans-
formation of u, an impossibility.
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