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Abstract

This is just a quick and condensed note on the basic definitions and characterizations of concave,
convex, quasiconcave and (to some extent) quasiconvex functions, with some examples.

Contents
1 Concave and convex functions 1

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Selected properties of concave functions . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Characterization of concave and convex functions by means of contour sets . . . . . . 3
1.4 Characterization of concave and convex differentiable functions . . . . . . . . . . . . 4

1.4.1 Continuous differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Principal minors and leading principal minors . . . . . . . . . . . . . . . . . . 4
1.4.3 Characterization of concave and convex functions by means of their derivatives 6

2 Quasiconcave and quasiconvex functions 8
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Characterization of quasiconcave and quasiconvex differentiable functions . . . . . . . 11

2.2.1 Bordered Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Characterization of quasiconcave and quasiconvex functions by means of their

derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 Concave and convex functions

1.1 Definitions

Definition 1. A function f : S ⊂ Rn → R defined on a convex set S is concave if for any two points
x1, x2 ∈ S and for any λ ∈ [0, 1] we have:

f
(
λx1 + (1 − λ) x2

)
≥ λ f (x1) + (1 − λ) f (x2)

f is called strictly concave if for any two points x1, x2 ∈ S and for any λ ∈ (0, 1) we have:

f
(
λx1 + (1 − λ) x2

)
> λ f (x1) + (1 − λ) f (x2)
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Definition 2. A function f : S ⊂ Rn → R defined on a convex set S is convex if for any two points
x1, x2 ∈ S and for any λ ∈ [0, 1] we have:

f
(
λx1 + (1 − λ) x2

)
≤ λ f (x1) + (1 − λ) f (x2)

f is called strictly convex if for any two points x1, x2 ∈ S and for any λ ∈ (0, 1) we have:

f
(
λx1 + (1 − λ) x2

)
< λ f (x1) + (1 − λ) f (x2)

Remark 3. A function is concave (convex) if the graph of the function is always above (below) any chord
(line segment between two points in the graph).

Remark 4. f concave ⇔− f convex.

Example 5. Let S = [0,∞) and consider f (x) =
√

x and g(x) = − f (x) = −
√

x

f is a concave function and g is a convex function.

1.2 Selected properties of concave functions

Theorem 6. Let f1, f2, . . . , fn be concave (convex) functions, and let α1 ≥ 0, α2 ≥ 0, . . . , αn ≥ 0. Then,
the linear combination

f = α1 f1 + · · · + αn fn

is also concave (convex).

Proof. Consider any two points x1, x2 ∈ S and any λ ∈ [0, 1]. Then,

f
(
λx1 + (1 − λ) x2

)
= α1 f1

(
λx1 + (1 − λ) x2

)
+ · · · + αn fn

(
λx1 + (1 − λ) x2

)
≥

≥ α1

(
λ f1

(
x1

)
+ (1 − λ) f1

(
x2

))
+ · · · + αn

(
λ fn

(
x1

)
+ (1 − λ) fn

(
x2

))
=

= λ
(
a1 f1(x1) + · · · + an f (x1)

)
+ (1 − λ)

(
a1 f1(x2) + · · · + an f (x2)

)
=

= λ f (x1) + (1 − λ) f (x2)
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The inequality at the end of the first line and beginning of the second line holds because all f j ( j = 1 . . . , n)
are concave functions and thereofere f j

(
λx1 + (1 − λ) x2

)
≥ λ f j(x1)+(1 − λ) f j(x2) ( j = 1 . . . , n), and also

because α1 ≥ 0, α2 ≥ 0, . . . , αn ≥ 0. Thus, we have proved that

f
(
λx1 + (1 − λ) x2

)
≥ λ f (x1) + (1 − λ) f (x2)

and hence the linear combinations of concave functions is concave.
(with a similar proof for convexity.) □

Definition 7. A function f : S ⊂ Rn → R of the form

f (x) = α0 + α1x1 + · · · + αnxn,

where α0, . . . αn ∈ R, is called an affine function. It is a linear function whenever α0 = 0.

Theorem 8. Any affine function is both concave and convex.

Proof. The proof follows from Theorem 6 above and from the fact that f (x) = xi, f (x) = −xi, and f (x) =
a0 are both concave and convex functions. □

Theorem 9. Let f : S ⊂ Rn → R be a concave (convex) function, and let g : R→ R be concave (convex)
and increasing. Then ( f ◦ g) : S ⊂ Rn → R is a concave (convex) function.

Proof. Consider any two points x1, x2 ∈ S and any λ ∈ [0, 1]. Then,

g
(

f
(
λx1 + (1 − λ) x2

))
≥ g

(
λ f (x1) + (1 − λ) f (x2)

)
≥

≥ λg
(

f (x1)
)
+ (1 − λ) g

(
f (x2)

)
,

where the first inequality holds since f is concave and g increasing, and the second inequility follows
from g being concave.
We have thus proved that

g
(

f
(
λx1 + (1 − λ) x2

))
≥ λg

(
f (x1)

)
+ (1 − λ) g

(
f (x2)

)
,

that is,
( f ◦ g)

(
λx1 + (1 − λ) x2

)
≥ λ ( f ◦ g) (x1) + (1 − λ) ( f ◦ g) (x2)

Thus, ( f ◦ g) is a concave function.
(with a similar proof for convexity.) □

Remark 10. An increasing transformation of a concave (convex) function is not necessarily concave
(convex). Consider f (x) = x and g(z) = z3.

1.3 Characterization of concave and convex functions by means of contour sets

Definition 11. Let f : S ⊂ Rn → R where S is a convex set. For any x̄ ∈ R the upper contour set
(U f (x̄)) and lower contour set (L f (x̄)) of x̄ according to f are defined as:

U f (x̄) = {x ∈ S | f (x) ≥ x̄}

L f (x̄) = {x ∈ S | f (x) ≤ x̄}
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Theorem 12. Let the function f : S ⊂ Rn → R defined on a convex set S be concave. Then for any x̄ ∈ R
the upper contour set U f (x̄) is either empty or a convex set.
Analogously, if f is convex then the lower contour set L f (x̄) is either empty or a convex for any x̄ ∈ R.

Proof. (For concavity)
Consider any two points x1, x2 ∈ U f (x̄) and any λ ∈ [0, 1]. We need to prove that if f is concave then
U f (x̄) is convex, that is, λx1 + (1 − λ) x2 ∈ U f (x̄) for any x̄ ∈ R.
Since by assumption f is concave we have that

f
(
λx1 + (1 − λ) x2

)
≥ λ f (x1) + (1 − λ) f (x2) (1.1)

Now, since x1, x2 ∈ U f (x̄) we have that

f (x1) ≥ x̄ ⇒ λ f (x1) ≥ λx̄ for any x̄
f (x2) ≥ x̄ ⇒ (1 − λ) f (x2) ≥ (1 − λ) x̄ for any x̄


adding up︷︸︸︷
=⇒ λ f (x1) + (1 − λ) f (x2) ≥ x̄

for any x̄ ∈ R. Going back to (1.1) we conclude that

f
(
λx1 + (1 − λ) x2

)
≥ λ f (x1) + (1 − λ) f (x2) ≥ x̄

for any x̄ ∈ R, and thus λx1 + (1 − λ) x2 ∈ U f (x̄) for any x̄ ∈ R as we wanted to prove. □

Remark 13. Notice that this is only a necessary condition, not sufficient. Consider f (x) = x3.

1.4 Characterization of concave and convex differentiable functions

1.4.1 Continuous differentiability

Definition 14. A function f : S ⊂ Rn → R is continuously differentiable, or f ∈ C1, if all its partial
derivatives exist and are continuous functions.

Definition 15. A function f : S ⊂ Rn → R is twice continuously differentiable, or f ∈ C2, if all its
partial first and second derivatives exist and are all continuous functions.

1.4.2 Principal minors and leading principal minors

Definition 16. A principal submatrix of order k (1 ≤ k ≤ n) of an n× n matrix A is the matrix obtained
by deleting any n − k rows and the corresponding n − k columns.

Definition 17. The determinant of a principal submatrix of order k is called a principal minor of order
k of A, denoted ∆k.

Claim 18. An n × n matrix A contains
(

n
n − k

)
principal minors of order k (1 ≤ k ≤ n) , which yields a

total of1 ∑n
k=1

(
n

n − k

)
= 2n − 1 principal minors.

Definition 19. The leading principal submatrix of order k (1 ≤ k ≤ n) of an n × n matrix is obtained
by deleting the last n − k rows and columns of the matrix.

1By Newton’s Binomial Theorem.
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Definition 20. The determinant of the leading principal submatrix of order k is called the leading prin-
cipal minor of order k of A, denoted Dk.

Claim 21. An n × n matrix A contains exactly one leading principal minor for each order k (1 ≤ k ≤ n) ,
which yields a total of

∑n
k=1 1 = n leading principal minors.

Example 22. Let A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

. Then,

there are
(

n
n − k

)
=

(
3
2

)
= 3 principal minors of order k = 1: ∆1

1, ∆
2
1, and ∆3

1

∆1
1 = |a11| , ∆

2
1 = |a22| , ∆

3
1 = |a33|

there are
(

n
n − k

)
=

(
3
1

)
= 3 principal minors of order k = 2: ∆2

2, ∆
2
2, and ∆3

2

∆1
2 =

∣∣∣∣∣∣ a22 a23
a32 a33

∣∣∣∣∣∣ , ∆2
2 =

∣∣∣∣∣∣ a11 a13
a31 a33

∣∣∣∣∣∣ , ∆3
2 =

∣∣∣∣∣∣ a11 a12
a21 a22

∣∣∣∣∣∣
there are

(
n

n − k

)
=

(
3
0

)
= 1 principal minor of order k = 3: ∆3

∆3 =

∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣
Notice that there is a total of 2n − 1 = 23 − 1 = 7 principal minors in total.
There is 1 leading principal minor of order k = 1: D1

D1 = |a11|

there is 1 leading principal minor of order k = 2: D2

D2 =

∣∣∣∣∣∣ a11 a12
a21 a22

∣∣∣∣∣∣
there is 1 leading principal minor of order k = 3: D3

D3 =

∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣
Proposition 23. Let A be an n × n matrix. Then,

• A is positive definite⇔ Dk > 0,∀k (1 ≤ k ≤ n);

• A is negative definite⇔ signDk = sign(−1)k,∀k (1 ≤ k ≤ n);

• A is positive semidefinite⇔ ∆k ≥ 0,∀k (1 ≤ k ≤ n);

• A is negative semidefinite⇔ sign∆k = sign(−1)k or ∆k = 0,∀k (1 ≤ k ≤ n).
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1.4.3 Characterization of concave and convex functions by means of their derivatives

Definition 24. Let Let f : S ⊂ Rn → R be a C1 function. The vector of first partial derivatives of f ,

D f (x) =
(
∂ f (x)
∂x1
, . . . ,

∂ f (x)
∂xn

)
,

is called de Jacobian of f .

Definition 25. Let Let f : S ⊂ Rn → R be a C2 function. The matrix of second partial derivatives of f ,

D2 f (x) =



∂2 f (x)
∂x2

1

∂2 f (x)
∂x1∂x2

· · ·
∂2 f (x)
∂x1∂xn

∂2 f (x)
∂x2∂x1

∂2 f (x)
∂x2

2
· · ·

∂2 f (x)
∂x2∂xn

...
...

. . .
...

∂2 f (x)
∂xn∂x1

∂2 f (x)
∂xn∂x2

· · ·
∂2 f (x)
∂x2

n


,

is called de Hessian of f .

Theorem 26. Let f : S ⊂ Rn → R be a C1 function. Then, f is concave if and only if

f (x2) − f (x1) ≤ D f (x1)(x2 − x1),∀x1, x2 ∈ S ,

that is,

f (x2) − f (x1) ≤
∂ f (x1)
∂x1

(
x2

1 − x1
1

)
+ · · · +

∂ f (x1)
∂xn

(
x2

n − x1
n

)
.

Similarly f is convex if and only if

f (x2) − f (x1) ≥ D f (x1)(x2 − x1),∀x1, x2 ∈ S .

Example 27. Let S = [0,∞) and consider f (x) =
√

x and g(x) = − f (x) = −
√

x

Slope =

Slope =

Slope =

Slope =

For f we have
f (x2) − f (x1)

x2 − x1 ≤ D f (x1)⇔ f (x2) − f (x1) ≤ D f (x1)(x2 − x1)
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Thus, f is a concave function. Analogously, For g we have

g(x2) − g(x1)
x2 − x1 ≥ Dg(x1)⇔ g(x2) − g(x1) ≥ Dg(x1)(x2 − x1)

Thus, g is a convex function.

Remark 28. A function is concave (convex) if the graph of the function is always below (above) the graph
of the tangent to the function.

Theorem 29. Let Let f : S ⊂ Rn → R be a C2 function. Then,

(i) f is concave if and only if the Hessian matrix D2 f (x) is negative semidefinite for all x ∈ S ;

(ii) f is strictly concave if the Hessian matrix D2 f (x) is negative definite for all x ∈ S ;

(iii) f is convex if and only if the Hessian matrix D2 f (x) is positive semidefinite for all x ∈ S ;

(iv) f is strictly convex if the Hessian matrix D2 f (x) is positive definite for all x ∈ S .

We thus have:

D2 f (x) negative ⇒ f (x) is strictly
definite for all x concave

⇓ ⇓

D2 f (x) negative ⇔ f (x) is concave
semidefinite for all x

with similar implications for convexity and positive definiteness.

Example 30. Consider the Cobb-Douglas function f (x1, x2) = xα1 xβ2 , with α, β > 0 and (x1, x2) ∈ R2
+.

For what values of α and β is this function concave ?
In this case we have:

D f (x) =
(
∂ f (x)
∂x1
,
∂ f (x)
∂x2

)
=

(
αxα−1

1 xβ2, βx
α
1 xβ−1

2

)
and

D2 f (x) =


∂2 f (x)
∂x2

1

∂2 f (x)
∂x1∂x2

∂2 f (x)
∂x2∂x1

∂2 f (x)
∂x2

2

 =

α(α − 1)xα−2

1 xβ2 αβxα−1
1 xβ−1

2

αβxα−1
1 xβ−1

2 β(β − 1)xα1 xβ−2
2


Notice that in this case,

there are
(

n
n − k

)
=

(
2
1

)
=2 principal minors of order k = 1: ∆1

1, and ∆2
1,

∆1
1 = α(α − 1)xα−2

1 xβ2, ∆
2
1 = β(β − 1)xα1 xβ−2

2
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there are
(

n
n − k

)
=

(
2
0

)
= 1 principal minors of order k = 2: ∆2,

∆2 =

∣∣∣∣∣∣∣∣∣
α(α − 1)xα−2

1 xβ2 αβxα−1
1 xβ−1

2

αβxα−1
1 xβ−1

2 β(β − 1)xα1 xβ−2
2

∣∣∣∣∣∣∣∣∣ =
=

(
α(α − 1)xα−2

1 xβ2
) (
β(β − 1)xα1 xβ−2

2

)
−

(
αβxα−1

1 xβ−1
2

) (
αβxα−1

1 xβ−1
2

)
=

=
(
α(α − 1)β(β − 1) − α2β2

) (
x2α−2

1 x2β−2
2

)
=

=
(
(α2 − α)(β2 − β) − α2β2

) (
x2α−2

1 x2β−2
2

)
=

=
(
(α2β2 − α2β − αβ2 + αβ) − α2β2

) (
x2α−2

1 x2β−2
2

)
=

= (αβ(−α − β) + 1)
(
x2α−2

1 x2β−2
2

)
=

= (1 − (α + β))αβ
(
x2α−2

1 x2β−2
2

)
For the function to be concave, by Theorem 29, the Hessian must be negative semidefinite. This, by
Proposition 23, occurs, when the principal minors of order 1 are all non-positive and the principal minor
of order 2 is non-negative. That is,

∆1
1 =≤ 0, ∆2

1 ≤ 0, and ∆2 ≥ 0

Notice that, given that α, β > 0 and x1 x2 ≥ 0, we have:

∆1
1 ≤ 0⇔ α ≤ 1

∆2
1 ≤ 0⇔ β ≤ 1
∆2 ≥ 0⇔ (α + β) ≤ 1

Thus, the function is concave if and only if it exhibits constant or decreasing returns to scale
Moreover, note that if (x1, x2) ∈ R2

++ then the Hessian is negative definite and thus the function is strictly
concave.
Question: Can the function be convex ?

2 Quasiconcave and quasiconvex functions

2.1 Definitions

Definition 31. A function f : S ⊂ Rn → R defined on a convex set S is quasiconcave if the upper
contour set U f (x̄) is convex for any x̄ ∈ R.
Similarly, the function f is quasiconvex if the lower contour set L f (x̄) is convex for any x̄ ∈ R.

Remark 32. Notice that what was a necessary condition for concavity (convexity) according to Theorem
12 is now a necessary and sufficient condition for quasiconcavity (quasiconvexity), for it is the definition.

Definition 33. A function f : S ⊂ Rn → R defined on a convex set S is quasiconcave if for any two
points x1, x2 ∈ S and for any λ ∈ [0, 1] we have:

f
(
λx1 + (1 − λ) x2

)
≥ min

{
f (x1), f (x2)

}
Similarly, the function f is quasiconvex f for any two points x1, x2 ∈ S and for any λ ∈ [0, 1] we have:

f
(
λx1 + (1 − λ) x2

)
≤ max

{
f (x1), f (x2)

}
8



Theorem 34. Definition 31 and Definition 33 are equivalent.

Proof. Let f : S ⊂ Rn → R defined on a convex set S .
[Definition 31⇒ Definition 33]

Asuming that the upper contour set U f (x̄) is convex for any x̄ ∈ R, we need to prove that for any two
points x1, x2 ∈ S and for any λ ∈ [0, 1] we have:

f
(
λx1 + (1 − λ) x2

)
≥ min

{
f (x1), f (x2)

}
Consider any two points x1, x2 ∈ S and take2 x̄ = min

{
f (x1), f (x2)

}
= f (x1). This means that

f (x1) = x̄⇒ x1 ∈ U f (x̄)

Also, since min
{
f (x1), f (x2)

}
= f (x1) we have that f (x2) ≥ f (x1) = x̄, which means that

f (x2) ≥ x̄⇒ x2 ∈ U f (x̄)

Since we are asuming that U f (x̄) is a convex set we have that

x1 ∈ U f (x̄) and x2 ∈ U f (x̄)⇒ λx1 + (1 − λ) x2 ∈ U f (x̄) for any λ ∈ [0, 1]

Then, by definition of upper contour set, λx1 + (1 − λ) x2 ∈ U f (x̄), which means that

f
(
λx1 + (1 − λ) x2

)
≥ x̄,

and this is true for any λ ∈ [0, 1]
Finally, since we have chosen x̄ = min

{
f (x1), f (x2)

}
, we conclude that for any λ ∈ [0, 1], we have:

f
(
λx1 + (1 − λ) x2

)
≥ min

{
f (x1), f (x2)

}
as we wanted to prove.
[Definition 31⇐ Definition 33]
Suppose that for any two points x1, x2 ∈ S and for any λ ∈ [0, 1] we have f

(
λx1 + (1 − λ) x2

)
≥

min
{
f (x1), f (x2)

}
. We need to prove that the upper contour set U f (x̄) is convex for any x̄ ∈ R.

Take any x1, x2 ∈ U f (x̄) ⊂ S . To prove convexity we need to verify that λx1 + (1 − λ) x2 ∈ U f (x̄) for any
λ ∈ [0, 1].
Since x1, x2 ∈ U f (x̄) we have that f (x1) ≥ x̄ and f (x2) ≥ x̄.

Assume WLOG that min
{
f (x1), f (x2)

}
= f (x1). Then, by assumption we have that for any λ ∈ [0, 1]

f
(
λx1 + (1 − λ) x2

)
≥ min

{
f (x1), f (x2)

}
= f (x1) ≥ x̄.

The above means that for any λ ∈ [0, 1]

f
(
λx1 + (1 − λ) x2

)
≥ x̄⇒ λx1 + (1 − λ) x2 ∈ U f (x̄)

thus proving that U f (x̄) is indeed a convex set. □

2We can choose this particular x̄ because U f (x̄) is convex for any x̄ ∈ R. Also, we can assume WLOG that min
{
f (x1), f (x2)

}
=

f (x1)
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Remark 35. By Remark 32 above, concavity (convexity) implies, but is not implied by, quasiconcavity
(quasiconvexity). Consider the function f (x) = x3, it is quasiconcave (and quasiconvex) but not concave
(nor convex).

Remark 36. f quasiconcave⇔ − f quasiconvex.

Theorem 37. Let f : S ⊂ Rn → R be a quasiconcave function, and let g : R → R be an increasing
function. Then ( f ◦ g) : S ⊂ Rn → R is a quasiconcave function.

Proof. Suppose that f is quasiconcave, that is, U f (x̄) is convex for any x̄ ∈ R. We need to prove that also
U( f◦g)(x̄) is convex for any x̄ ∈ R.
Take any x̄ ∈ R. Since g : R→ R is increasing there must exist a unique x̂ ∈ R such that

x̄ = g(x̂)

or, in other words, x̂ = g−1(x̄) ∈ R. Then,

U( f◦g)(x̄) = {x ∈ S | g ( f (x)) ≥ x̄} =

=
{
x ∈ S | f (x) ≥ g−1(x̄)

}
=

= {x ∈ S | f (x) ≥ x̂} = U f (x̂)

Since f is quasiconcave we know that U f (x̄) is convex for any x̄ ∈ R, and thus U f (x̂) in convex. Hence,
U( f◦g)(x̄) = U f (x̂) is convex, as we wanted to prove. □

Remark 38. Notice that the transformation function g does not need to be quasiconcave for this property
to hold, unlike in the case of concave functions where the transformation needed to be a concave function.

Example 39. Any Cobb-Douglas function f (x1, x2) = xα1 xβ2 , with α, β > 0 and (x1, x2) ∈ R2
+. is

quasiconcave.
Indeed, as seen in Example 30, α + β ≤ 1⇒ f concave, which by Remark 32 implies that f is quasicon-
cave.
Now, if α+ β > 1 consider the increasing function g(z) = zα+β and the Cobb-Douglas function h(x1, x2) =

x
α
α+β

1 x
β
α+β

2 . Then, we have that f = g ◦ h, that is,

g (h(x1, x2)) =
(
x
α
α+β

1 x
β
α+β

2

)α+β
= xα1 xβ2 = f (x1, x2)

The funcion h is concave as α
α+β
+

β
α+β
= 1 (Example 30), and therefore quasiconcave; and the function

g is clearly increasing. Therefore, an increasing returns to scale Cobb-Douglas function (α + β > 1 ) can
be obtained as an increasing transformation of a quasiconcave function, thus being quasiconcave itself by
Theorem 37.

Example 40. Any CES function y =
(
xρ1 + xρ2

) 1
ρ , 0 < ρ < 1 is quasiconcave.

Indeed, if 0 < ρ < 1 then both xρ1 and xρ2 are concave functions. Then,
(
xρ1 + xρ2

)
is also concave for beeing

a linear combination of concave functions (Theorem 6) and thus quasiconcave (Remark 32). Finaly, since
g(z) = z

1
ρ is an increasing function we have that any CES function is an increasing transformation of a

quasiconcave function and thus quasiconcave by Theorem 37.
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2.2 Characterization of quasiconcave and quasiconvex differentiable functions

2.2.1 Bordered Hessian

Definition 41. Let Let f : S ⊂ Rn → R be a C2 function. The matrix of first and second partial derivatives
of f , 

0 ∂ f (x)
∂x1

∂ f (x)
∂x2

· · ·
∂ f (x)
∂xk

∂ f (x)
∂x1

∂2 f (x)
∂x2

1

∂2 f (x)
∂x1∂x2

· · ·
∂2 f (x)
∂x1∂xk

∂ f (x)
∂x2

∂2 f (x)
∂x2∂x1

∂2 f (x)
∂x2

2
· · ·

∂2 f (x)
∂x2∂xk

...
...

...
. . .

...
∂ f (x)
∂xk

∂2 f (x)
∂xk∂x1

∂2 f (x)
∂xk∂x2

· · ·
∂2 f (x)
∂xk∂xk


,

is called the bordered Hessian of order k of f . Let D2
k f (x) denote the determinant of the bordered

Hessian of order k.

Remark 42. Note that D2
k f (x) is equal to the leading principal minor of order k+1 of the bordered Hessian

of order n.

2.2.2 Characterization of quasiconcave and quasiconvex functions by means of their derivatives

Theorem 43. Let Let f : S ⊂ Rn → R be a C1 function. Then, f is quasiconcave if and only if:

f (x2) ≥ f (x1) ⇒ D f (x1)(x2 − x1) ≥ 0,∀x1, x2 ∈ S

Similarly f is quasiconvex if and only if :

f (x2) ≤ f (x1) ⇒ D f (x1)(x2 − x1) ≤ 0,∀x1, x2 ∈ S

Theorem 44. Let Let f : S ⊂ Rn → R be a C2 function.
(i) If f is quasiconcave then

D2
1 f (x) ≤ 0, D2

2 f (x) ≥ 0, · · · ,D2
k f (x) ≥ 0 if k is even and D2

k f (x) ≤ 0 if k is odd

for k = 1, . . . n and for all x ∈ S ;
(ii) if f is quasiconvex then D2

k f (x) ≤ 0 for k = 1, . . . n and for all x ∈ S ;
(iii) if

D2
1 f (x) < 0, D2

2 f (x) > 0, · · · ,D2
k f (x) > 0 if k is even and D2

k f (x) < 0 if k is odd

for k = 1, . . . n and for all x ∈ S , then f is quasiconcave;
(iv) if D2

k f (x) < 0 for k = 1, . . . n, for all x ∈ S , then f is quasiconvex.

Remark 45. Notice that the characterization of quasiconcave and quasiconvex functions are not compa-
rable with that for concave and convex functions in Theorem 29. To clarify this let us define

Condition A→ D2
1 f (x) ≤ 0, D2

2 f (x) ≥ 0, · · · ,D2
k f (x) ≥ 0 if k is even and D2

k f (x) ≤ 0
if kis odd for k = 1, . . . , n and for all x ∈ S

Condition B→ D2
1 f (x) < 0, D2

2 f (x) > 0, · · · ,D2
k f (x) > 0 if k is even and D2

k f (x) < 0
if kis odd for k = 1, . . . , n and for all x ∈ S

Then, according to Theorem 44 we have
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B ⇒ f quasiconcave ⇒ A

Example 46. In Example 39 we have seen that any Cobb-Douglas function f (x1, x2) = xα1 xβ2 , with α, β >
0 and (x1, x2) ∈ R2

+, is quasiconcave by showing that it can be expressed as an increasing transofrmation
of a quasiconcave function. We are now going to see that it verifies item (i) in Theorem 44. To this
purpose we compute the bordered Hessians D2

1 f (x) and D2
2 f (x) (since n = 2 there are no more bordered

Hessians in this case)

D2
1 f (x) =

∣∣∣∣∣∣∣ 0 ∂ f (x)
∂x1

∂ f (x)
∂x1

∂2 f (x)
∂x2

1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ 0 αxα−1

1 xβ2
αxα−1

1 xβ2 α(α − 1)xα−2
1 xβ2

∣∣∣∣∣∣ =
= −

(
αxα−1

1 xβ2
)2

D2
2 f (x) =

∣∣∣∣∣∣∣∣∣∣∣
0 ∂ f (x)

∂x1

∂ f (x)
∂x2

∂ f (x)
∂x1

∂2 f (x)
∂x2

1

∂2 f (x)
∂x1∂x2

∂ f (x)
∂x2

∂2 f (x)
∂x2∂x1

∂2 f (x)
∂x2

2

∣∣∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

0 αxα−1
1 xβ2 βxα1 xβ−1

2
αxα−1

1 xβ2 α(α − 1)xα−2
1 xβ2 αβxα−1

1 xβ−1
2

βxα1 xβ−1
2 αβxα−1

1 xβ−1
2 β(β − 1)xα1 xβ−2

2

∣∣∣∣∣∣∣∣∣ =
=

(
αβ + α2β + αβ2

)
x3α−2

1 x3β−2
2

We note that, for α, β > 0 and (x1, x2) ∈ R2
+,

D2
1 f (x) = −

(
αxα−1

1 xβ2
)2
≤ 0 (2.1)

D2
2 f (x) =

(
αβ + α2β + αβ2

)
x3α−2

1 x3β−2
2 ≥ 0

Therefore, conlusion (i) in Theorem 44 (Condition A) is indeed satisfied.
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