Notes on Concavity, Convexity, Quasiconcavity and Quasiconvexity

Xavier Vilà*

August 30, 2022

Abstract												
This is just a quick and condensed note on the basic definitions and characterizations of concave, convex, quasiconcave and (to some extent) quasiconvex functions, with some examples.												
Contents												
1 Concave and convex functions												
1.1 Definitions. 1												
1.2 Selected properties of concave functions . 2												
1.3 Characterization of concave and convex functions by means of contour sets 3												
1.4 Characterization of concave and convex differentiable functions 4												
1.4.1 Continuous differentiability . 4												
1.4.2 Principal minors and leading principal minors.												
1.4.3 Characterization of concave and convex functions by means of their derivatives 6												
2.1 Definitions. 8												
2.2 Characterization of quasiconcave and quasiconvex differentiable functions 11												
2.2.1 Bordered Hessian . 11												
2.2.2 Characterization of quasiconcave and quasiconvex functions by means of their												
derivatives . 11												

1 Concave and convex functions

1.1 Definitions

Definition 1. A function $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined on a convex set S is concave if for any two points $x^{1}, x^{2} \in S$ and for any $\lambda \in[0,1]$ we have:

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right)
$$

f is called strictly concave if for any two points $x^{1}, x^{2} \in S$ and for any $\lambda \in(0,1)$ we have:

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right)>\lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right)
$$

[^0]Definition 2. A function $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined on a convex set S is convex if for any two points $x^{1}, x^{2} \in S$ and for any $\lambda \in[0,1]$ we have:

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \leq \lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right)
$$

f is called strictly convex if for any two points $x^{1}, x^{2} \in S$ and for any $\lambda \in(0,1)$ we have:

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right)<\lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right)
$$

Remark 3. A function is concave (convex) if the graph of the function is always above (below) any chord (line segment between two points in the graph).
Remark 4. f concave $\Leftrightarrow-f$ convex.
Example 5. Let $S=[0, \infty)$ and consider $f(x)=\sqrt{x}$ and $g(x)=-f(x)=-\sqrt{x}$

f is a concave function and g is a convex function.

1.2 Selected properties of concave functions

Theorem 6. Let $f_{1}, f_{2}, \ldots, f_{n}$ be concave (convex) functions, and let $\alpha_{1} \geq 0, \alpha_{2} \geq 0, \ldots, \alpha_{n} \geq 0$. Then, the linear combination

$$
f=\alpha_{1} f_{1}+\cdots+\alpha_{n} f_{n}
$$

is also concave (convex).
Proof. Consider any two points $x^{1}, x^{2} \in S$ and any $\lambda \in[0,1]$. Then,

$$
\begin{aligned}
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) & =\alpha_{1} f_{1}\left(\lambda x^{1}+(1-\lambda) x^{2}\right)+\cdots+\alpha_{n} f_{n}\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \\
& \geq \alpha_{1}\left(\lambda f_{1}\left(x^{1}\right)+(1-\lambda) f_{1}\left(x^{2}\right)\right)+\cdots+\alpha_{n}\left(\lambda f_{n}\left(x^{1}\right)+(1-\lambda) f_{n}\left(x^{2}\right)\right)= \\
& =\lambda\left(a_{1} f_{1}\left(x^{1}\right)+\cdots+a_{n} f\left(x^{1}\right)\right)+(1-\lambda)\left(a_{1} f_{1}\left(x^{2}\right)+\cdots+a_{n} f\left(x^{2}\right)\right)= \\
& =\lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right)
\end{aligned}
$$

The inequality at the end of the first line and beginning of the second line holds because all $f_{j}(j=1 \ldots, n)$ are concave functions and thereofere $f_{j}\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \lambda f_{j}\left(x^{1}\right)+(1-\lambda) f_{j}\left(x^{2}\right)(j=1 \ldots, n)$, and also because $\alpha_{1} \geq 0, \alpha_{2} \geq 0, \ldots, \alpha_{n} \geq 0$. Thus, we have proved that

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right)
$$

and hence the linear combinations of concave functions is concave.
(with a similar proof for convexity.)
Definition 7. A function $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the form

$$
f(x)=\alpha_{0}+\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}
$$

where $\alpha_{0}, \ldots \alpha_{n} \in \mathbb{R}$, is called an affine function. It is a linear function whenever $\alpha_{0}=0$.
Theorem 8. Any affine function is both concave and convex.
Proof. The proof follows from Theorem6above and from the fact that $f(x)=x_{i}, f(x)=-x_{i}$, and $f(x)=$ a_{0} are both concave and convex functions.

Theorem 9. Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a concave (convex) function, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be concave (convex) and increasing. Then $(f \circ g): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a concave (convex) function.

Proof. Consider any two points $x^{1}, x^{2} \in S$ and any $\lambda \in[0,1]$. Then,

$$
\begin{aligned}
g\left(f\left(\lambda x^{1}+(1-\lambda) x^{2}\right)\right) & \geq g\left(\lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right)\right) \geq \\
& \geq \lambda g\left(f\left(x^{1}\right)\right)+(1-\lambda) g\left(f\left(x^{2}\right)\right),
\end{aligned}
$$

where the first inequality holds since f is concave and g increasing, and the second inequility follows from g being concave.
We have thus proved that

$$
g\left(f\left(\lambda x^{1}+(1-\lambda) x^{2}\right)\right) \geq \lambda g\left(f\left(x^{1}\right)\right)+(1-\lambda) g\left(f\left(x^{2}\right)\right)
$$

that is,

$$
(f \circ g)\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \lambda(f \circ g)\left(x^{1}\right)+(1-\lambda)(f \circ g)\left(x^{2}\right)
$$

Thus, $(f \circ g)$ is a concave function.
(with a similar proof for convexity.)
Remark 10. An increasing transformation of a concave (convex) function is not necessarily concave (convex). Consider $f(x)=x$ and $g(z)=z^{3}$.

1.3 Characterization of concave and convex functions by means of contour sets

Definition 11. Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ where S is a convex set. For any $\bar{x} \in \mathbb{R}$ the upper contour set $\left(U_{f}(\bar{x})\right)$ and lower contour set $\left(L_{f}(\bar{x})\right)$ of \bar{x} according to f are defined as:

$$
\begin{aligned}
U_{f}(\bar{x}) & =\{x \in S \mid f(x) \geq \bar{x}\} \\
L_{f}(\bar{x}) & =\{x \in S \mid f(x) \leq \bar{x}\}
\end{aligned}
$$

Theorem 12. Let the function $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined on a convex set S be concave. Then for any $\bar{x} \in \mathbb{R}$ the upper contour set $U_{f}(\bar{x})$ is either empty or a convex set.
Analogously, if f is convex then the lower contour set $L_{f}(\bar{x})$ is either empty or a convex for any $\bar{x} \in \mathbb{R}$.

Proof. (For concavity)

Consider any two points $x^{1}, x^{2} \in U_{f}(\bar{x})$ and any $\lambda \in[0,1]$. We need to prove that if f is concave then $U_{f}(\bar{x})$ is convex, that is, $\lambda x^{1}+(1-\lambda) x^{2} \in U_{f}(\bar{x})$ for any $\bar{x} \in \mathbb{R}$.
Since by assumption f is concave we have that

$$
\begin{equation*}
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right) \tag{1.1}
\end{equation*}
$$

Now, since $x^{1}, x^{2} \in U_{f}(\bar{x})$ we have that

$$
\left.\begin{array}{l}
f\left(x^{1}\right) \geq \bar{x} \Rightarrow \lambda f\left(x^{1}\right) \geq \lambda \bar{x} \text { for any } \bar{x} \\
f\left(x^{2}\right) \geq \bar{x} \Rightarrow(1-\lambda) f\left(x^{2}\right) \geq(1-\lambda) \bar{x} \text { for any } \bar{x}
\end{array}\right\} \overbrace{\Longrightarrow}^{\text {adding up }} \lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right) \geq \bar{x}
$$

for any $\bar{x} \in \mathbb{R}$. Going back to (1.1) we conclude that

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right) \geq \bar{x}
$$

for any $\bar{x} \in \mathbb{R}$, and thus $\lambda x^{1}+(1-\lambda) x^{2} \in U_{f}(\bar{x})$ for any $\bar{x} \in \mathbb{R}$ as we wanted to prove.
Remark 13. Notice that this is only a necessary condition, not sufficient. Consider $f(x)=x^{3}$.

1.4 Characterization of concave and convex differentiable functions

1.4.1 Continuous differentiability

Definition 14. A function $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable, or $f \in C^{1}$, if all its partial derivatives exist and are continuous functions.

Definition 15. A function $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable, or $f \in C^{2}$, if all its partial first and second derivatives exist and are all continuous functions.

1.4.2 Principal minors and leading principal minors

Definition 16. A principal submatrix of order $\boldsymbol{k}(1 \leq k \leq n)$ of an $n \times n$ matrix A is the matrix obtained by deleting any $n-k$ rows and the corresponding $n-k$ columns.
Definition 17. The determinant of a principal submatrix of order k is called a principal minor of order \boldsymbol{k} of A, denoted Δ_{k}.
Claim 18. An $n \times n$ matrix A contains $\binom{n}{n-k}$ principal minors of order $k(1 \leq k \leq n)$, which yields a total of ${ }^{1} \sum_{k=1}^{n}\binom{n}{n-k}=2^{n}-1$ principal minors.
Definition 19. The leading principal submatrix of order $\boldsymbol{k}(1 \leq k \leq n)$ of an $n \times n$ matrix is obtained by deleting the last $n-k$ rows and columns of the matrix.

[^1]Definition 20. The determinant of the leading principal submatrix of order k is called the leading principal minor of order \boldsymbol{k} of A, denoted D_{k}.

Claim 21. An $n \times n$ matrix A contains exactly one leading principal minor for each order $k(1 \leq k \leq n)$, which yields a total of $\sum_{k=1}^{n} 1=n$ leading principal minors.

Example 22. Let $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$. Then,
there are $\binom{n}{n-k}=\binom{3}{2}=3$ principal minors of order $k=1: \Delta_{1}^{1}, \Delta_{1}^{2}$, and Δ_{1}^{3}

$$
\Delta_{1}^{1}=\left|a_{11}\right|, \Delta_{1}^{2}=\left|a_{22}\right|, \Delta_{1}^{3}=\left|a_{33}\right|
$$

there are $\binom{n}{n-k}=\binom{3}{1}=3$ principal minors of order $k=2: \Delta_{2}^{2}, \Delta_{2}^{2}$, and Δ_{2}^{3}

$$
\Delta_{2}^{1}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|, \Delta_{2}^{2}=\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|, \Delta_{2}^{3}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

there $\operatorname{are}\binom{n}{n-k}=\binom{3}{0}=1$ principal minor of order $k=3: \Delta_{3}$

$$
\Delta_{3}=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Notice that there is a total of $2^{n}-1=2^{3}-1=7$ principal minors in total.
There is 1 leading principal minor of order $k=1: D_{1}$

$$
D_{1}=\left|a_{11}\right|
$$

there is 1 leading principal minor of order $k=2: D_{2}$

$$
D_{2}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

there is 1 leading principal minor of order $k=3: D_{3}$

$$
D_{3}=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Proposition 23. Let A be an $n \times n$ matrix. Then,

- A is positive definite $\Leftrightarrow D_{k}>0, \forall k(1 \leq k \leq n)$;
- A is negative definite $\Leftrightarrow \operatorname{sign} D_{k}=\operatorname{sign}(-1)^{k}, \forall k(1 \leq k \leq n)$;
- A is positive semidefinite $\Leftrightarrow \Delta_{k} \geq 0, \forall k(1 \leq k \leq n)$;
- A is negative semidefinite $\Leftrightarrow \operatorname{sign} \Delta_{k}=\operatorname{sign}(-1)^{k}$ or $\Delta_{k}=0, \forall k(1 \leq k \leq n)$.

1.4.3 Characterization of concave and convex functions by means of their derivatives

Definition 24. Let Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1} function. The vector of first partial derivatives of f,

$$
D f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right),
$$

is called de Jacobian of f.
Definition 25. Let Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function. The matrix of second partial derivatives of f,

$$
D^{2} f(x)=\left(\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right),
$$

is called de Hessian of f.
Theorem 26. Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1} function. Then, fis concave if and only if

$$
f\left(x^{2}\right)-f\left(x^{1}\right) \leq D f\left(x^{1}\right)\left(x^{2}-x^{1}\right), \forall x^{1}, x^{2} \in S,
$$

that is,

$$
f\left(x^{2}\right)-f\left(x^{1}\right) \leq \frac{\partial f\left(x^{1}\right)}{\partial x_{1}}\left(x_{1}^{2}-x_{1}^{1}\right)+\cdots+\frac{\partial f\left(x^{1}\right)}{\partial x_{n}}\left(x_{n}^{2}-x_{n}^{1}\right) .
$$

Similarly f is convex if and only if

$$
f\left(x^{2}\right)-f\left(x^{1}\right) \geq D f\left(x^{1}\right)\left(x^{2}-x^{1}\right), \forall x^{1}, x^{2} \in S .
$$

Example 27. Let $S=[0, \infty)$ and consider $f(x)=\sqrt{x}$ and $g(x)=-f(x)=-\sqrt{x}$

For f we have

$$
\frac{f\left(x^{2}\right)-f\left(x^{1}\right)}{x^{2}-x^{1}} \leq D f\left(x^{1}\right) \Leftrightarrow f\left(x^{2}\right)-f\left(x^{1}\right) \leq D f\left(x^{1}\right)\left(x^{2}-x^{1}\right)
$$

Thus, f is a concave function. Analogously, For g we have

$$
\frac{g\left(x^{2}\right)-g\left(x^{1}\right)}{x^{2}-x^{1}} \geq D g\left(x^{1}\right) \Leftrightarrow g\left(x^{2}\right)-g\left(x^{1}\right) \geq D g\left(x^{1}\right)\left(x^{2}-x^{1}\right)
$$

Thus, g is a convex function.
Remark 28. A function is concave (convex) if the graph of the function is always below (above) the graph of the tangent to the function.

Theorem 29. Let Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function. Then,
(i) f is concave if and only if the Hessian matrix $D^{2} f(x)$ is negative semidefinite for all $x \in S$;
(ii) f is strictly concave if the Hessian matrix $D^{2} f(x)$ is negative definite for all $x \in S$;
(iii) f is convex if and only if the Hessian matrix $D^{2} f(x)$ is positive semidefinite for all $x \in S$;
(iv) f is strictly convex if the Hessian matrix $D^{2} f(x)$ is positive definite for all $x \in S$.

We thus have:

$D^{2} f(x)$ negative definite for all x \Downarrow	\Rightarrow	$f(x)$ is strictly concave \Downarrow
n $D^{2} f(x)$ negative semidefinite for all x	\Leftrightarrow	$f(x)$ is concave

with similar implications for convexity and positive definiteness.
Example 30. Consider the Cobb-Douglas function $f\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{\beta}$, with $\alpha, \beta>0$ and $\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}$. For what values of α and β is this function concave ?
In this case we have:

$$
D f(x)=\left(\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}\right)=\left(\alpha x_{1}^{\alpha-1} x_{2}^{\beta}, \beta x_{1}^{\alpha} x_{2}^{\beta-1}\right)
$$

and

$$
D^{2} f(x)=\left(\begin{array}{cc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}}
\end{array}\right)=\left(\begin{array}{cc}
\alpha(\alpha-1) x_{1}^{\alpha-2} x_{2}^{\beta} & \alpha \beta x_{1}^{\alpha-1} x_{2}^{\beta-1} \\
\alpha \beta x_{1}^{\alpha-1} x_{2}^{\beta-1} & \beta(\beta-1) x_{1}^{\alpha} x_{2}^{\beta-2}
\end{array}\right)
$$

Notice that in this case,
there are $\binom{n}{n-k}=\binom{2}{1}=2$ principal minors of order $k=1: \Delta_{1}^{1}$, and Δ_{1}^{2},

$$
\Delta_{1}^{1}=\alpha(\alpha-1) x_{1}^{\alpha-2} x_{2}^{\beta}, \Delta_{1}^{2}=\beta(\beta-1) x_{1}^{\alpha} x_{2}^{\beta-2}
$$

there $\operatorname{are}\binom{n}{n-k}=\binom{2}{0}=1$ principal minors of order $k=2: \Delta_{2}$,

$$
\begin{aligned}
\Delta_{2} & =\left|\begin{array}{cc}
\alpha(\alpha-1) x_{1}^{\alpha-2} x_{2}^{\beta} & \alpha \beta x_{1}^{\alpha-1} x_{2}^{\beta-1} \\
\alpha \beta x_{1}^{\alpha-1} x_{2}^{\beta-1} & \beta(\beta-1) x_{1}^{\alpha} x_{2}^{\beta-2}
\end{array}\right|= \\
& =\left(\alpha(\alpha-1) x_{1}^{\alpha-2} x_{2}^{\beta}\right)\left(\beta(\beta-1) x_{1}^{\alpha} x_{2}^{\beta-2}\right)-\left(\alpha \beta x_{1}^{\alpha-1} x_{2}^{\beta-1}\right)\left(\alpha \beta x_{1}^{\alpha-1} x_{2}^{\beta-1}\right)= \\
& =\left(\alpha(\alpha-1) \beta(\beta-1)-\alpha^{2} \beta^{2}\right)\left(x_{1}^{2 \alpha-2} x_{2}^{2 \beta-2}\right)= \\
& =\left(\left(\alpha^{2}-\alpha\right)\left(\beta^{2}-\beta\right)-\alpha^{2} \beta^{2}\right)\left(x_{1}^{2 \alpha-2} x_{2}^{2 \beta-2}\right)= \\
& =\left(\left(\alpha^{2} \beta^{2}-\alpha^{2} \beta-\alpha \beta^{2}+\alpha \beta\right)-\alpha^{2} \beta^{2}\right)\left(x_{1}^{2 \alpha-2} x_{2}^{2 \beta-2}\right)= \\
& =(\alpha \beta(-\alpha-\beta)+1)\left(x_{1}^{2 \alpha-2} x_{2}^{2 \beta-2}\right)= \\
& =(1-(\alpha+\beta)) \alpha \beta\left(x_{1}^{2 \alpha-2} x_{2}^{2 \beta-2}\right)
\end{aligned}
$$

For the function to be concave, by Theorem 29, the Hessian must be negative semidefinite. This, by Proposition 23, occurs, when the principal minors of order 1 are all non-positive and the principal minor of order 2 is non-negative. That is,

$$
\Delta_{1}^{1}=\leq 0, \Delta_{1}^{2} \leq 0, \text { and } \Delta_{2} \geq 0
$$

Notice that, given that $\alpha, \beta>0$ and $x_{1} x_{2} \geq 0$, we have:

$$
\begin{aligned}
& \Delta_{1}^{1} \leq 0 \Leftrightarrow \alpha \leq 1 \\
& \Delta_{1}^{2} \leq 0 \Leftrightarrow \beta \leq 1 \\
& \Delta_{2} \geq 0 \Leftrightarrow(\alpha+\beta) \leq 1
\end{aligned}
$$

Thus, the function is concave if and only if it exhibits constant or decreasing returns to scale Moreover, note that if $\left(x_{1}, x_{2}\right) \in \mathbb{R}_{++}^{2}$ then the Hessian is negative definite and thus the function is strictly concave.
Question: Can the function be convex ?

2 Quasiconcave and quasiconvex functions

2.1 Definitions

Definition 31. A function $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined on a convex set S is quasiconcave if the upper contour set $U_{f}(\bar{x})$ is convex for any $\bar{x} \in \mathbb{R}$.
Similarly, the function f is quasiconvex if the lower contour set $L_{f}(\bar{x})$ is convex for any $\bar{x} \in \mathbb{R}$.
Remark 32. Notice that what was a necessary condition for concavity (convexity) according to Theorem 12 is now a necessary and sufficient condition for quasiconcavity (quasiconvexity), for it is the definition.

Definition 33. A function $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined on a convex set S is quasiconcave if for any two points $x^{1}, x^{2} \in S$ and for any $\lambda \in[0,1]$ we have:

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \min \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}
$$

Similarly, the function f is quasiconvex f for any two points $x^{1}, x^{2} \in S$ and for any $\lambda \in[0,1]$ we have:

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \leq \max \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}
$$

Theorem 34. Definition 31 and Definition 33 are equivalent.
Proof. Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined on a convex set S.
[Definition 31] \Rightarrow Definition 33]
Asuming that the upper contour set $U_{f}(\bar{x})$ is convex for any $\bar{x} \in \mathbb{R}$, we need to prove that for any two points $x^{1}, x^{2} \in S$ and for any $\lambda \in[0,1]$ we have:

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \min \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}
$$

Consider any two points $x^{1}, x^{2} \in S$ and tak $\varepsilon^{2} \bar{x}=\min \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}=f\left(x^{1}\right)$. This means that

$$
f\left(x^{1}\right)=\bar{x} \Rightarrow x^{1} \in U_{f}(\bar{x})
$$

Also, since $\min \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}=f\left(x^{1}\right)$ we have that $f\left(x^{2}\right) \geq f\left(x^{1}\right)=\bar{x}$, which means that

$$
f\left(x^{2}\right) \geq \bar{x} \Rightarrow x^{2} \in U_{f}(\bar{x})
$$

Since we are asuming that $U_{f}(\bar{x})$ is a convex set we have that

$$
x^{1} \in U_{f}(\bar{x}) \text { and } x^{2} \in U_{f}(\bar{x}) \Rightarrow \lambda x^{1}+(1-\lambda) x^{2} \in U_{f}(\bar{x}) \text { for any } \lambda \in[0,1]
$$

Then, by definition of upper contour set, $\lambda x^{1}+(1-\lambda) x^{2} \in U_{f}(\bar{x})$, which means that

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \bar{x}
$$

and this is true for any $\lambda \in[0,1]$
Finally, since we have chosen $\bar{x}=\min \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}$, we conclude that for any $\lambda \in[0,1]$, we have:

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \min \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}
$$

as we wanted to prove.
[Definition 31] Definition 33]
Suppose that for any two points $x^{1}, x^{2} \in S$ and for any $\lambda \in[0,1]$ we have $f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq$ $\min \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}$. We need to prove that the upper contour set $U_{f}(\bar{x})$ is convex for any $\bar{x} \in \mathbb{R}$.
Take any $x^{1}, x^{2} \in U_{f}(\bar{x}) \subset S$. To prove convexity we need to verify that $\lambda x^{1}+(1-\lambda) x^{2} \in U_{f}(\bar{x})$ for any $\lambda \in[0,1]$.
Since $x^{1}, x^{2} \in U_{f}(\bar{x})$ we have that $f\left(x^{1}\right) \geq \bar{x}$ and $f\left(x^{2}\right) \geq \bar{x}$.
Assume WLOG that $\min \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}=f\left(x^{1}\right)$. Then, by assumption we have that for any $\lambda \in[0,1]$

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \min \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}=f\left(x^{1}\right) \geq \bar{x}
$$

The above means that for any $\lambda \in[0,1]$

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \geq \bar{x} \Rightarrow \lambda x^{1}+(1-\lambda) x^{2} \in U_{f}(\bar{x})
$$

thus proving that $U_{f}(\bar{x})$ is indeed a convex set.

[^2]Remark 35. By Remark 32 above, concavity (convexity) implies, but is not implied by, quasiconcavity (quasiconvexity). Consider the function $f(x)=x^{3}$, it is quasiconcave (and quasiconvex) but not concave (nor convex).
Remark 36. f quasiconcave $\Leftrightarrow-f$ quasiconvex.
Theorem 37. Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a quasiconcave function, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing function. Then $(f \circ g): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a quasiconcave function.

Proof. Suppose that f is quasiconcave, that is, $U_{f}(\bar{x})$ is convex for any $\bar{x} \in \mathbb{R}$. We need to prove that also $U_{(f \circ g)}(\bar{x})$ is convex for any $\bar{x} \in \mathbb{R}$.
Take any $\bar{x} \in \mathbb{R}$. Since $g: \mathbb{R} \rightarrow \mathbb{R}$ is increasing there must exist a unique $\hat{x} \in \mathbb{R}$ such that

$$
\bar{x}=g(\hat{x})
$$

or, in other words, $\hat{x}=g^{-1}(\bar{x}) \in \mathbb{R}$. Then,

$$
\begin{aligned}
U_{(f \circ g)}(\bar{x}) & =\{x \in S \mid g(f(x)) \geq \bar{x}\}= \\
& =\left\{x \in S \mid f(x) \geq g^{-1}(\bar{x})\right\}= \\
& =\{x \in S \mid f(x) \geq \hat{x}\}=U_{f}(\hat{x})
\end{aligned}
$$

Since f is quasiconcave we know that $U_{f}(\bar{x})$ is convex for any $\bar{x} \in \mathbb{R}$, and thus $U_{f}(\hat{x})$ in convex. Hence, $U_{(f \circ g)}(\bar{x})=U_{f}(\hat{x})$ is convex, as we wanted to prove.

Remark 38. Notice that the transformation function g does not need to be quasiconcave for this property to hold, unlike in the case of concave functions where the transformation needed to be a concave function.
Example 39. Any Cobb-Douglas function $f\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{\beta}$, with $\alpha, \beta>0$ and $\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}$. is quasiconcave.
Indeed, as seen in Example 30, $\alpha+\beta \leq 1 \Rightarrow f$ concave, which by Remark 32 implies that f is quasiconcave.
Now, if $\alpha+\beta>1$ consider the increasing function $g(z)=z^{\alpha+\beta}$ and the Cobb-Douglas function $h\left(x_{1}, x_{2}\right)=$ $x_{1}^{\frac{\alpha}{\alpha+\beta}} x_{2}^{\frac{\beta}{\alpha+\beta}}$. Then, we have that $f=g \circ h$, that is,

$$
g\left(h\left(x_{1}, x_{2}\right)\right)=\left(x_{1}^{\frac{\alpha}{\alpha+\beta}} x_{2}^{\frac{\beta}{\alpha+\beta}}\right)^{\alpha+\beta}=x_{1}^{\alpha} x_{2}^{\beta}=f\left(x_{1}, x_{2}\right)
$$

The funcion h is concave as $\frac{\alpha}{\alpha+\beta}+\frac{\beta}{\alpha+\beta}=1$ (Example 30), and therefore quasiconcave; and the function g is clearly increasing. Therefore, an increasing returns to scale Cobb-Douglas function $(\alpha+\beta>1)$ can be obtained as an increasing transformation of a quasiconcave function, thus being quasiconcave itself by Theorem 37

Example 40. Any CES function $y=\left(x_{1}^{\rho}+x_{2}^{\rho}\right)^{\frac{1}{\rho}}, 0<\rho<1$ is quasiconcave.
Indeed, if $0<\rho<1$ then both x_{1}^{ρ} and x_{2}^{ρ} are concave functions. Then, $\left(x_{1}^{\rho}+x_{2}^{\rho}\right)$ is also concave for beeing a linear combination of concave functions (Theorem6) and thus quasiconcave (Remark 32). Finaly, since $g(z)=z^{\frac{1}{\rho}}$ is an increasing function we have that any CES function is an increasing transformation of a quasiconcave function and thus quasiconcave by Theorem 37

2.2 Characterization of quasiconcave and quasiconvex differentiable functions

2.2.1 Bordered Hessian

Definition 41. Let Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function. The matrix of first and second partial derivatives of f,

$$
\left(\begin{array}{ccccc}
0 & \frac{\partial f(x)}{\partial x_{1}} & \frac{\partial f(x)}{\partial x_{2}} & \cdots & \frac{\partial f(x)}{\partial x_{k}} \\
\frac{\partial f(x)}{\partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{k}} \\
\frac{\partial f(x)}{\partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{k}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(x)}{\partial x_{k}} & \frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{k} \partial x_{k}}
\end{array}\right)
$$

is called the bordered Hessian of order \boldsymbol{k} of f. Let $D_{k}^{2} f(x)$ denote the determinant of the bordered Hessian of order k.

Remark 42. Note that $D_{k}^{2} f(x)$ is equal to the leading principal minor of order $k+1$ of the bordered Hessian of order n.

2.2.2 Characterization of quasiconcave and quasiconvex functions by means of their derivatives

Theorem 43. Let Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1} function. Then, f is quasiconcave if and only if:

$$
f\left(x^{2}\right) \geq f\left(x^{1}\right) \Rightarrow D f\left(x^{1}\right)\left(x^{2}-x^{1}\right) \geq 0, \forall x^{1}, x^{2} \in S
$$

Similarly f is quasiconvex if and only if :

$$
f\left(x^{2}\right) \leq f\left(x^{1}\right) \Rightarrow D f\left(x^{1}\right)\left(x^{2}-x^{1}\right) \leq 0, \forall x^{1}, x^{2} \in S
$$

Theorem 44. Let Let $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function.
(i) If f is quasiconcave then

$$
D_{1}^{2} f(x) \leq 0, D_{2}^{2} f(x) \geq 0, \cdots, D_{k}^{2} f(x) \geq 0 \text { if } k \text { is even and } D_{k}^{2} f(x) \leq 0 \text { if } k \text { is odd }
$$

for $k=1, \ldots n$ and for all $x \in S$;
(ii) if f is quasiconvex then $D_{k}^{2} f(x) \leq 0$ for $k=1, \ldots n$ and for all $x \in S$;
(iii) if

$$
D_{1}^{2} f(x)<0, D_{2}^{2} f(x)>0, \cdots, D_{k}^{2} f(x)>0 \text { if } k \text { is even and } D_{k}^{2} f(x)<0 \text { if } k \text { is odd }
$$

for $k=1, \ldots n$ and for all $x \in S$, then f is quasiconcave;
(iv) if $D_{k}^{2} f(x)<0$ for $k=1, \ldots n$, for all $x \in S$, then f is quasiconvex.

Remark 45. Notice that the characterization of quasiconcave and quasiconvex functions are not comparable with that for concave and convex functions in Theorem 29. To clarify this let us define

$$
\begin{aligned}
\text { Condition } A & \rightarrow D_{1}^{2} f(x) \leq 0, D_{2}^{2} f(x) \geq 0, \cdots, D_{k}^{2} f(x) \geq 0 \text { if } k \text { is even and } D_{k}^{2} f(x) \leq 0 \\
& \text { if } k \text { is odd for } k=1, \ldots, n \text { and for all } x \in S \\
\text { Condition } B & \rightarrow D_{1}^{2} f(x)<0, D_{2}^{2} f(x)>0, \cdots, D_{k}^{2} f(x)>0 \text { if } k \text { is even and } D_{k}^{2} f(x)<0
\end{aligned}
$$

$$
\text { if } k \text { is odd for } k=1, \ldots, n \text { and for all } x \in S
$$

Then, according to Theorem 44 we have

$$
B \Rightarrow f \text { quasiconcave } \Rightarrow A
$$

Example 46. In Example 39 we have seen that any Cobb-Douglas function $f\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} \beta_{2}^{\beta}$, with α, $\beta>$ 0 and $\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}$, is quasiconcave by showing that it can be expressed as an increasing transofrmation of a quasiconcave function. We are now going to see that it verifies item (i) in Theorem 44 To this purpose we compute the bordered Hessians $D_{1}^{2} f(x)$ and $D_{2}^{2} f(x)$ (since $n=2$ there are no more bordered Hessians in this case)

$$
\begin{aligned}
D_{1}^{2} f(x) & =\left|\begin{array}{cc}
0 & \frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{1}^{2}}
\end{array}\right|=\left|\begin{array}{cc}
0 & \alpha x_{1}^{\alpha-1} x_{2}^{\beta} \\
\alpha x_{1}^{\alpha-1} x_{2}^{\beta} & \alpha(\alpha-1) x_{1}^{\alpha-2} x_{2}^{\beta}
\end{array}\right|= \\
& =-\left(\alpha x_{1}^{\alpha-1} x_{2}^{\beta}\right)^{2} \\
D_{2}^{2} f(x) & =\left|\begin{array}{ccc}
0 & \frac{\partial f(x)}{\partial x_{1}} & \frac{\partial f(x)}{\partial x_{2}} \\
\frac{\partial f(x)}{\partial x_{1}} & \frac{\partial^{2} f(x)}{x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} \\
\frac{\partial f(x)}{\partial x_{2}} & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}}
\end{array}\right|=\left|\begin{array}{ccc}
0 & \alpha x_{1}^{\alpha-1} x_{2}^{\beta} & \beta x_{1}^{\alpha} x_{2}^{\beta-1} \\
\alpha x_{1}^{\alpha-1} x_{2}^{\beta} & \alpha(\alpha-1) x_{1}^{\alpha-2} x_{2}^{\beta} & \alpha \beta x_{1}^{\alpha-1} x_{2}^{\beta-1} \\
\beta x_{1}^{\alpha} x_{2}^{\beta-1} & \alpha \beta x_{1}^{\alpha-1} x_{2}^{\beta-1} & \beta(\beta-1) x_{1}^{\alpha} x_{2}^{\beta-2}
\end{array}\right|= \\
& =\left(\alpha \beta+\alpha^{2} \beta+\alpha \beta^{2}\right) x_{1}^{3 \alpha-2} x_{2}^{3 \beta-2}
\end{aligned}
$$

We note that, for $\alpha, \beta>0$ and $\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}$,

$$
\begin{align*}
& D_{1}^{2} f(x)=-\left(\alpha x_{1}^{\alpha-1} x_{2}^{\beta}\right)^{2} \leq 0 \tag{2.1}\\
& D_{2}^{2} f(x)=\left(\alpha \beta+\alpha^{2} \beta+\alpha \beta^{2}\right) x_{1}^{3 \alpha-2} x_{2}^{3 \beta-2} \geq 0
\end{align*}
$$

Therefore, conlusion (i) in Theorem 44 (Condition A) is indeed satisfied.

[^0]: *Departament d'Economia i d'Història Econòmica (Universitat Autònoma de Barcelona) and Barcelona Graduate School of Economics.

[^1]: ${ }^{1}$ By Newton's Binomial Theorem.

[^2]: ${ }^{2}$ We can choose this particular \bar{x} because $U_{f}(\bar{x})$ is convex for any $\bar{x} \in \mathbb{R}$. Also, we can assume WLOG that $\min \left\{f\left(x^{1}\right), f\left(x^{2}\right)\right\}=$ $f\left(x^{1}\right)$

