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Abstract: 
We measure the effect of the 1999 Ecuadorian financial crisis on the z-score of height-
for-age in 2012. A tax on all financial transactions was deployed on 1 Jan 1999 creating 
a liquidity, currency, and inflationary crisis. Individuals born after this shock were 
exposed to pre-natal maternal stress in-utero. We use a regression discontinuity model 
to estimate the average treatment effect by measuring the difference in outcomes 
between individuals born days before and those born days after the crisis. We find a 
significant deleterious effect of this shock on the z-scores of height-for-age in 2012 and 
propose the increase in stress affects the epigenome of the offspring affecting stunting 
in the long term. 
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1. Introduction 

After a decade of financial liberalization, risky lending operations and a general failure to effectively monitor 

bank operations, in 1998, the all-time lowest price of oil left Ecuador with a painful lack of foreign currency, 

and, the worst “El Niño” phenomenon in its history impaired banks assets and created a gaping hole in 

public finance. The last quarter of 1998 saw a drain in liquidity leading the Central Bank of Ecuador (CBE) 

to simultaneously provide lender of last resort assistance and perform open market operations in a futile 

attempt to control inflation. On 1 Jan 1999 an unusual tax on all financial transactions fueled a drastic fall 

in total deposits,1 a swift and massive flight in liquidity as preferences shifted to the dollar and accelerated 

the collapse of various financial institutions in Ecuador. By March 1999 the run on deposits and the currency 

crisis led the government to declare a bank holiday and freezing financial assets. By October 1999 the 

government had suspended payments on Discount and PDI Brady Bonds and Brady and Eurobonds, and by 

March 2000, Ecuador had adopted the US dollar as legal tender (Jacome, 2004; Sturzenegger & 

Zettelmeyer, 2008). 

We interpret the crash in liquidity in Jan 1999 as the point of infliction, as the sudden and precipitous 

collapse of the financial system is an objective stress shock for individual deposit holders. An unanticipated 

potentially measurable amount of hardship endured by a pregnant individual exposes the offspring to pre-

natal maternal stress changing its fetal environment. This type of change can cause alterations in the series 

of “switches” which determine whether parts of a genome are expressed or not, such that, the health 

effects of an intra-uterine shock may remain latent though the life cycle (Almond & Currie, 2011). 

In this paper we measure the effect of this 1999 intra-uterine shock on the 2012 z-score of height-for-age 

of the offspring. To estimate the average treatment effect (ATE) we use a regression discontinuity (RD) 

design. We compare children born just after the 1 Jan 1999 “cut-off” with those born just before. This 

creates a counter-factual (control group) which can be assumed to have very similar observable and 

unobservable characteristics to the treatment group, and thus, allows us to identify the causal effect of the 

exogenous in-utero stress shock. We find children born after the crash to have significantly lower z-scores 

(in 2012) than children born before. Although we cannot test this hypothesis directly, we propose that the 

financial crash created an intra-uterine shock through pre-natal maternal stress (Almond & Currie, 2011).  

 
1 See Figure 1. 
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RD models do not assume the treatment variation is “as good as random” but rather this variation is a 

consequence of the inability of agents to control the assignment variable near the cut-off. The choice of 

these bandwidths, polynomial forms, and kernel functions is fundamental in the analysis and interpretation 

of RD designs. Therefore, we make sure relevant observable characteristics are not significant determinants 

of selection into treatment. We use a data-driven method to select an appropriate bandwidth, we use the 

Akaike information criterion (AIC) as well as a dummy variable test in order to select the polynomial order, 

and finally, we test the sensitivity of the results to triangle, rectangle and Epanechnikov kernel functional 

forms (Cattaneo, et al., 2018; Lee & Lemieux, 2010). Additionally, we run 4 robustness checks: (1) placebo 

effects for the months and years predating the crisis and placebo effects for individuals without bank 

accounts; (2) we examine the density of the running variable, and (3) test for the sensitivity of the model 

to observations near the cut-off, and, finally, (4) we test to see if other observables have the same cut-off. 

This study contributes to the literature in three ways: (i) we study a financial crisis which is not typically 

taken as a stressful life event in the literature; (ii) we measure long-term effects rather than short- or 

medium-term ones; (iii) we find a natural experiment where an exogenous cut-off allows for the 

measurement of a causal long-term effect on health. This paints a more comprehensive picture of the 

consequences of pre-natal maternal stress. (iv) Finally, we have not found studies which use regression 

discontinuity models or which analyze the long term health effects of pre-natal exposure to the 1999 

Ecuadorian crisis which makes this an original contribution to the debate. 

This paper is divided into six parts: Section 2 explains the origin, outbreak and aftermath of the 1999 

Ecuadorian crisis; Section 3 outlines the fetal origins hypothesis, the empirical evidence, and how it applies 

to this case; Section 4 explains the empirical strategy; Section 5 presents the data and main results; Section 

6 presents the robustness checks, which go through every case where our regression discontinuity model 

might fail; and finally Section 7 concludes with a discussion of our main findings. 

2. Context: the financial crisis of 1999 

1.1. Run-up to the crisis (1994-1998) 

The run up to the crisis was marked by three important events: (1) The liberalization of financial markets 

leading to a first liquidity crisis in 1994, (2) a depleted oil price ($10/barrel) in 1997, coupled with, (3) the 

worst “El Niño” phenomenon in recorded history during the winter of 1997-8. Surrounding these events 
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was a period of political and social unrest. In this section we will briefly explain the details which are relevant 

to the 1999 financial crash. 

In 1994 the Law of Financial System Institutions2 which liberalized interest and exchange rates, was 

enacted. The law promoted the free entry and exit of institutions to the financial market and allowed for 

an expansion of bank operations particularly in foreign currency and in offshore branches. Central Bank of 

Ecuador (CBE) was named lender of last resort (LOLR) and was only allowed to provide liquidity assistance 

in the local currency (Sucres). Additionally, the amount of liquidity assistance allowed was unlimited and 

the deposit guarantees would rely on CBE funds. Finally, there was a rapid reduction in bank reserve 

requirements from 28% to 10% in domestic currency and from 35% to 10% in foreign currency. This was 

essentially part of a greater liberalization process which had begun in the early 1990’s that coincided with 

a parallel increase of capital inflows and attracted to higher domestic returns. Between 1993 and 1994 the 

CBE international reserves doubled and the number of financial institutions increased by more than 30% 

(from 33 to 44) (Jacome, 2004; Martinez, 2006). 

Financial intermediaries failed to gauge the risk in lending operations3 and the Superintendence of Banks 

and Insurance Companies4 failed to effectively monitor these operations, particularly in offshore branches. 

This allowed banks to circumvent regulations and controls and engage in transactions with currency and 

maturity mismatches in the denomination of assets and liabilities,5 connected lending, large amounts of 

non-performing loans and, in some cases, even fraudulent operations (Jacome, 2004; Martinez, 2006). 

In 1995, the border conflict with Peru6 and “a number of other exogenous shocks” led to an unanticipated 

liquidity crunch. In order to control inflation, the CBE stabilized the exchange rate by contracting money 

through Open Market Operations (OMO). This pushed the nominal interest rate up to 50%7 which created 

liquidity problems for banks with maturity mismatches. Banco Continental failed and was acquired by the 

 
2 Name in Spanish: Ley General de Instituciones del Sistema Financiero de 1994. Executive Order 1852 in Official Registry 475, 4 
Jul 1994 (Decreto Ejecutivo 1852 Registro Oficial 475 4 de Julio de 1994).  
3 Credits increased 40% in 1993 and 50% in 1994. 
4 Superintendencia de Bancos. 
5 Currency or maturity of assets not equal to currency or maturity of liabilities. 
6 January 26 – February 28, 1995. 
7 And the real interest rate up to 30%. 
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State. The CBE isolated the crisis by providing liquidity support to other banks. An ominous equilibrium 

ensued in 1997 and, with the liquidity conditions restored, the interest rate decreased (Jacome, 2004). 

Nevertheless, the banking system remained fragile due to poor quality of bank assets and a resulting equity 

shortage. In the winter of 1997-1998 Ecuador suffered the worst “El Niño” phenomenon in its history. This 

destroyed agricultural areas, particularly in the coastal regions, impairing banking assets. Additionally, in 

early 1997 both president and vice-president were removed from office and a very close general election 

was held in May 1998. Meanwhile, the price of oil was $10 a barrel making foreign currency scarce and 

hurting public finance (Jacome, 2004). 

Solbanco was the first (small) bank to close in April 1998. This led to a wave of withdrawals in other banks. 

In August 1998, a medium sized bank (Banco de Préstamos) closed and returned depreciated deposits of 

only small savers after several weeks. Larger deposit holders did not receive savings back. In September 

1998 a large bank (Filanbanco) along with 11 other financial institutions requested lender of last resort 

(LOLR) assistance from the CBE. Between September and November of 1998, the LOLR assistance provided 

by the CBE reached 30% of the money base. In order to hold down the depreciation of the currency, the 

CBE tried to mop up liquidity by simultaneously selling bonds8 through OMOs (See Appendix 1 for Figures 

on financial assistance to banks, OMOs and net international reserves). This proved insufficient as the Sucre 

depreciated by 24%, inflation reached 15% and international reserves fell by 7.6%. Finally, in the last 

quarter of 1998 banks foreign credit lines experienced a US$300 million cut due to the Russian and Brazilian 

crisis (Jacome, 2004; Martinez, 2006). 

1.2. The AGD and the 1% tax: first trimester of 1999 

In December 1998, legislation9 meant to deal with the absence of effective bank resolution instruments 

was approved by Congress. The law created the Deposit Guarantee Agency (AGD)10 in order to provide a 

blanket guarantee of deposits and instituted a 1% tax on all financial transactions meant to increase 

government revenue while simultaneously eliminating all income tax (Cantos Bonilla, 2006; Jacome, 2004). 

 
8 Bonos de estabilización monetaria, BEMs 
9 Name in Spanish: Ley de Reordenamiento en Materia Económica en el Área Tributario - Financiera. Published in the Official 
Registry Supplement 78 1 Dic 1998. (Publicada en el Suplemento del Registro Oficial No. 78 del I de diciembre de 1998). 
10  Given its name in Spanish: Agencia de Garantía de Depositos. 
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The AGD began operating on 1 Dec 1998 and was entitled to “purchase and assume operations” of financial 

institutions. Notwithstanding, 6 banks were closed between December 1998 and January 1999 except 

Filanbanco which was considered “too big to fail.” In order to materialize the blanket guarantee in a context 

of lacking fiscal funds long term securities (AGD bonds) were used. The AGD started honoring the blanket 

guarantee with resources from the CBE only in April 1999. This fueled withdrawals from other banks, 

eroded AGD credibility and stimulated contagion (Cantos Bonilla, 2006; Jacome, 2004). 

On 1 Jan 1999 the financial tax was deployed. It proved devastating for the financial system as it was 

enacted in the context of waning confidence. This drove the largest liquidity flight since the first bank failure 

in April 1998 (Figure 1), a speculative run on the Sucre as preferences shifted to the Dollar, and indirectly, 

it increased pressure on the exchange rate, and, accelerated the collapse of various financial institutions as 

deposits plummeted 11. By February 1999, CBE international reserves had shrunk to the point where 

sustaining the exchanged rate was no longer possible. During this month, the CBE floated the Sucre 

resulting in an almost immediate 50% devaluation (Jacome, 2004; Cantos Bonilla, 2006). 

The ensuing months saw the predictable consequences. In the early days of March 1999, the largest bank 

(in terms of deposits, Banco del Progreso) experienced a massive run on deposits. This, coupled with the 

currency crisis and the systematic lack of confidence, led the government to declare a bank holiday on 

Monday March 8th, 1999.12 This holiday lasted a week and finalized in the widespread freezing of all bank 

accounts with a balance over 500 USD to avoid further capital flight. Savings accounts would be frozen for 

a year and checking accounts for 6 months (Jacome, 2004). 

1.3. Discussion on our crisis threshold 

Waves of withdrawals occurred fairly regularly in Ecuador. However, as we can see in Figure 1, between 

the first bank failure (April 1998) and December 1998 total deposits continued to increase. Only in Jan 1999 

did total deposits fall. Figure 2 shows how the largest liquidity crunch faced by the banks also occurred in 

January 1999 which was only stopped with the freezing of bank deposits in March 1999. Why would there 

be a bank run in January 1999 if banks were closing since April 1998 and inflation and devaluation was 

 
11 Notably the largest bank in terms of deposits (Banco del Progreso). 
12 Meaning that banks remained closed. 
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increasing since September 1998 (see Figure 3 & Figure 15) (Jacome, 2004)? Furthermore, wouldn’t the 

creation of the AGD have been meant to prevent capital flight? 

We believe the financial tax marks the beginning of the bank run, despite the approval of the tax occurring 

on 1 Dec 1998, leaving enough time for deposit holders to anticipate and adapt to it. Total deposits grew 

in December 1998 (Figure 1), therefore, the extent to which deposit holders adjusted expectations in 

anticipation of the tax did not take into account the collapse of the economy. If deposit holders could have 

anticipated the crisis with the announcement of the tax, deposits would have decreased in December 1998. 

We thus argue the contagion effect the tax had on deposits was unanticipated by policy makers and deposit 

holders. And it is this unanticipated nature which makes the 1 Jan 1999 a suitable cut-off for our regression 

discontinuity design. 

Figure 1 Total Deposits and Currency Issue (Billions of Sucres) 

 
Source: Jacome, 2004; Source of data cites in Jacome, 2004: Central Bank of Ecuador 
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Figure 2 Liquidity and credit crunch 

 
Source: Jacome, 2004; Source of data cites in Jacome, 2004: Central Bank of Ecuador 

Figure 3 Inflation and monetary base growth (annual percentage rate) 

 
Source: Jacome, 2004; Source of data in Jacome 2004: Central Bank of Ecuador. 

3. Mechanism: intra-uterine shocks 

3.1. Stress and the fetal environment 

The fetal origins hypothesis, proposed by British physician and epidemiologist David J. Barker, suggests that 

exposure of the fetus to adverse environmental in-utero conditions affect the programming of certain 
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metabolic characteristics which may have effects later in life (Barker, 1990). Specifically, fetal conditions 

affect a series of “switches” referred to as the epigenome that determine whether parts of a genome are 

expressed or not (Almond & Currie, 2011). The genome of an individual, which can be described as the 

“hardware” of genetics is determined at conception and is fixed over time. However, the epigenome of an 

individual can be described as the “software” of genetics, i.e. the “switching” on or off of genes, and can 

change as a result of environmental shocks.  

Gluckman et al. (2005) propose that this is basically a predictive adaptive response the fetus has to an early 

environmental “cue”. In other words, an intra-uterine shock may be interpreted by the fetus as a signal of 

its post-natal environment, leading it to preemptively adopt a developmental trajectory which might better 

suit its expected future living conditions. This “coping” mechanism can be advantageous or 

disadvantageous depending on the degree of mismatch between the predicted and actual future 

environment. Therefore, the response can have long term effects on the individual’s fitness for survival if 

it imposes costs that impact that individual at a later stage in life. For example, a response of the fetus to a 

reduction in maternal nutrition is to alter its fetal growth pattern in such a way that it matches the supply 

of nutrients. This allows the fetus to survive, however, it may have post-natal costs such as altered 

pancreatic development, insulin release and blood vessel (which supply nutrients) growth, leading, for 

example, to an abnormal level of insulin “resistance” meant to save energy consumption for survival. This 

may affect the individual’s fitness later in life. 

Rice and Thapar (2010) and Rice et al. (2010) effectively disentangle the effect of the fetal environment (on 

the epigenetics) from the effect of “hardware” genetics by studying parents who conceived by in vitro 

fertilization where some were genetically related to their offspring while others where not. This distinction 

allows them to identify the contribution of maternal intrauterine environment to offspring birth outcomes 

independently of the contribution of the genome. They find a correlation between maternal height, 

offspring birthweight, and head circumference among both genetically related and unrelated offspring. 

These results suggested a possible biological interaction between the intrauterine environment and birth 

outcomes beyond the genetic (Rice & Thapar, 2010). The same authors use the same in vitro fertilization 

design to study associations between prenatal stress and offspring birthweight, gestational age and 

antisocial behavior. They find significant correlations between pre-natal stress and birth outcomes among 
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genetically related and unrelated offspring. These results are consistent with the hypothesis that the pre-

natal maternal stress has an important role in birth outcomes (Rice, et al., 2010; Rice & Thapar, 2010).13 

Pre-natal maternal stress can increase levels of CRH (Corticotropin-releasing hormone) which regulates the 

duration of pregnancy and fetal maturation (Holzman, et al., 2001; Beydoun & Saftlas, 2008; Mansour & 

Rees, 2011; Camacho, 2008). Endocrinologist Jonathan Seckl14 considers excess levels of stress hormones 

in the fetus “reset” an important arbitrator of stress in the body making it hypersensitive to even banal 

events (Couzin, 2002). There is an increasing amount of empirical evidence of the link between intra-

uterine stress shocks and adverse health outcomes at birth and later in life.  

3.2. Empirical evidence for intra-uterine shocks 

Although Barker’s initial work was essentially correlational (Barker & Osmond, 1986; Barker, 1995), we find 

increasing amounts of evidence which suggest an empirical link. We found five meta-analyses which 

describe the mixed evidence between pre-natal maternal stress and birth outcomes. Beydoun and Saftlas 

(2008) find that 9 out of 10 studies report significant effects of PNM stress on birth weight, low birth weight 

(LBW) or fetal growth restriction. Almond and Currie (2011) find numerous studies providing evidence of 

the long-term consequences of a wide variety of intrauterine shocks. Conversely, Zijlmans’ et al. (2015) 

meta-analysis finds only a small number of significant associations between maternal prenatal cortisol and 

child outcomes. However, they find a large heterogeneity in study designs and cortisol assessment 

methods. They argue that maternal cortisol may not to be the only or main mechanism in the maternal 

prenatal stress - child outcomes relation (Zijlmans, et al., 2015). 

Notwithstanding, Bussieres et al. (2015) find three factors are relevant on the magnitude of the effect: (1) 

Pregnancy-related stress (e.g. fear of childbirth) effects are greater in magnitude than non-pregnancy 

related stress (e.g. life event measures). (2) Studies involving high-risk samples (e.g. adolescents, mothers 

with hypertension, diabetes) tend to produce greater associations as compared to low-risk groups. Finally, 

(3) studies conducted outside of North America/Europe produce greater effect sizes (Bussières, et al., 2015) 

 
13 In contrast, the link between prenatal stress and offspring attention deficit hyperactivity disorder was only present in related 
offspring. 
14 Of Western General Hospital in Edinburgh, U.K. 



11 
 

Schetter & Tanner (2012) find that a majority of the more than a dozen published studies measuring 

objective stress events15 have significant effects on pre-term birth and birth weight, while studies on 

perceived stress did not consistently predict pre-term birth or birthweight. On the other hand, Hobel et al. 

(2008) find mixed evidence of links between psychosocial stress and preterm birth. They argue there are 

two consistently relevant factors to preterm birth: (1) the timing of the stressor, and (2) the woman’s 

perception of it. This seems to contradict Schetter & Tanner (2012), however, they are not referring to 

measures of perceived stress. Rather, they find that women become less responsive to stressful stimuli as 

pregnancy advances. Therefore, with some exception, objective life events stressors tend to affect birth 

outcomes most when they occur in the first trimester (Hobel, et al., 2008; Schetter & Tanner, 2012). 

Various studies find significant associations between intra-uterine exposure to natural disasters, such as 

hurricanes, ice storms, floods and earthquakes, (Currie & Rossin-Slater, 2013; Dancause, et al., 2011; 

Hilmert, et al., 2016; Tong, et al., 2011; Harville & Do, 2016) and the probability of abnormal conditions of 

the newborn,16 birth lengths, low birthweight, and pre-term delivery in the US and Canada, and on low 

birthweight in Haiti. Such associations, however, do not always hold. For instance, no changes in birth 

outcomes were found after the Fukushima disaster (Leppold, et al., 2017). Family events such as the death 

of a loved one or a financial stress are found to be significant in shortened gestational age, pre-term birth, 

low birth weight, and small for gestational age in Sweden, particularly when the shock was in the 5th and/or 

6th month while in China the effect on gestational weight gain was found to depend on pre-pregnancy BMI 

(Class, et al., 2011; Zhu, et al., 2013). Various authors study the events on September 11th 200117 and find 

significant associations with lower term birthweight and birth length (Lederman, et al., 2004; Eskenazi, et 

al., 2007; Maslow, et al., 2016). In Israel, exposure to rocket attacks during the second trimester, and, 

random landmine explosions in Colombia in the first trimester of pregnancy were associated with LBW 

(Wainstock, et al., 2013; Camacho, 2008). A study on immigration raids in the USA finds that infants born 

to Latina mothers had an increased risk of LBW while no such change was observed among infants born to 

non-Latina white mothers (Novak, et al., 2017).  

 
15 Acute stressors (e.g. “life events”, catastrophic, community-wide disasters), chronic stressors (e.g. household strain or 
homelessness), and neighborhood stressors (e.g. poverty or crime). 
16 Such as being on a ventilator more than 30 min and meconium aspiration syndrome (MAS). 
17 Terrorist attack on the World Trade Center in New York City. 
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There is mixed evidence on the effect of a financial crisis in the literature. Studies in Iceland find increase 

in risk of LBW shortly after the financial collapse in 2008 (Eiríksdóttir, et al., 2013), however, other studies 

find that six years after the collapse, there is little notable impact of the crisis on key child health indicators 

(Gunnlaugsson, 2016). Additionally, in Sweden, a study finds no significant increase in the prevalence of 

gestational hypertension in the first year following the economic collapse (Eiríksdóttir, et al., 2015).  

These financial crisis studies focus on the short to medium term effects. Furthermore, most of the studies 

reviewed in the meta-analysis and on stressful life events focus on short term effects of intra-uterine shocks 

such as birth outcomes or prevalence after the shock. The studies that focus on long term effect are mainly 

on pre-natal exposure to famine such as the Dutch famine of 194418 where obesity rates were twice as high 

among those who had first trimester exposure (Stein, et al., 1975) and there was an increase in 

schizophrenia among those affected (Hoek, et al., 1998). The findings have been replicated for the Chinese 

famine of 1959-1961 (St Clair, et al., 2005). However, no effect was found for individuals inflicted by the 

siege of Leningrad (Stanner, et al., 1997) nor for those who affected by the Finnish famine of 1866-1868 

(Kannisto, et al., 1997; Almond & Currie, 2011). 

This paper contributes to the literature in that it studies the long-term effects of a financial crisis. Our 

findings could be informative of the possible effect on the pre-natal exposure to the 2008 financial crisis, 

particularly in countries where the crisis affected individual’s savings. Secondly, we measure long-term 

effects rather than immediate birth outcomes or medium-term effects on prevalence measures. This is 

relevant given it may provide an explanation for the lack of efficacy of certain public policies focused on 

improving health outcomes while ignoring the fetal origin hypothesis. It provides evidence that preventive 

public policy interventions during pregnancy could potentially be more effective in terms of health 

outcomes later in life. Finally, we find that most studies are correlational, few studies address issues of 

endogeneity, particularly when dealing with perceptions of stress or pregnancy-related stressors. In studies 

where there is an exogenous shock there are mostly simple regression methods which compare the before-

after outcomes without providing an appropriate counter-factual. This is the first study to our knowledge 

which provides a causal effect by using regression discontinuity models.  

 
18 Known as the “Hunger Winter.” 
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4. Methodology 
We use a sharp RD model which we explain in this section. If we have an assignment variable Si which 

determines whether the individual receives the “treatment” (the tax shock before birth) with an eligibility 

cut-off at S∗ (1 Jan 1999) we are able to model the effect of the shock on the individual outcomes yi (z-

score of height-for-age) using the RD method. This allocation mechanism generates a non-linear relation 

between “treatment” and number of days born before/after the crisis (𝑆𝑆𝑖𝑖). In general, the estimating 

equation is 𝑦𝑦𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑖𝑖 + 𝜀𝜀𝑖𝑖, where individuals (children) with 𝑠𝑠𝑖𝑖 ≥ 𝑠𝑠∗ (born on or after 1 Jan 1999) receive 

the “treatment” and individuals with 𝑠𝑠𝑖𝑖 < 𝑠𝑠∗ (born before 1 Jan 1999) do not. If we assume that limits exist 

on either side of the threshold 𝑠𝑠∗, the impact estimation for an arbitrarily small 𝜀𝜀 > 0 around that threshold 

would be as follows (Lee & Lemieux, 2010): 

 𝐸𝐸[𝑦𝑦𝑖𝑖|𝑠𝑠∗ − 𝜀𝜀] − 𝐸𝐸[𝑦𝑦𝑖𝑖|𝑠𝑠∗ + 𝜀𝜀] = 𝐸𝐸[𝛽𝛽𝑆𝑆𝑖𝑖|𝑠𝑠∗ − 𝜀𝜀] − 𝐸𝐸[𝛽𝛽𝑆𝑆𝑖𝑖|𝑠𝑠∗ + 𝜀𝜀] (1) 

When taking the limit of both sides of equation (1) as 𝜀𝜀 → 0 we identify β as the ratio of the difference in 

outcomes of individuals just above and below the threshold, weighted by the difference in their realizations 

of 𝑆𝑆𝑖𝑖 as follows (Lee & Lemieux, 2010): 

 lim
𝜀𝜀→0

𝐸𝐸[𝑦𝑦𝑖𝑖|𝑠𝑠∗ − 𝜀𝜀] − lim
𝜀𝜀→0

𝐸𝐸[𝑦𝑦𝑖𝑖|𝑠𝑠∗ + 𝜀𝜀] ⇒ 𝑦𝑦− − 𝑦𝑦+ = 𝛽𝛽(𝑆𝑆− − 𝑆𝑆+) ⇒ 𝛽𝛽 = 𝑦𝑦−−𝑦𝑦+

𝑆𝑆−−𝑆𝑆+
  (2) 

We assume, that individuals are assigned to “treatment” solely on the basis of the assignment variable 

(number of days born before/after crisis). Therefore, the assignment variable is deterministic in receiving 

the “treatment”. 

5. Data 
The National Health and Nutrition Survey (ENSANUT)19 is a cross-section database built by the National 

Institute for Statistics and Censes (INEC)20 in Ecuador between 2011 and 2013. It covers various health 

topics including anthropometric measures for children, adolescents, and adults. It has a total sample of 

92,502 individuals out of which we have a sample of 32,426 children between the ages of 5 and 19 with 

our outcome variable z-score of height-for-age (Ministerio de Salud Publica; Instituto National de 

Estadisticas y Censos, 2013). 

 
19 Given its name in Spanish: Encuesta Nacional de Salud y Nutrición. 
20 Given its name in Spanish: Instituto Nacional de Estadísticas y Censos. 
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5.1. The dependent variable: z-score of height-for-age 

The z-score of height-for-age (zhfai) was calculated by the INEC and the Ministry of Health using the 

method proposed by the World Health Organization (WHO). The zhfai establishes the growth standard of 

children by defining a normal growth curve (World Health Organization, 2013; World Health Organization, 

1997). 

 zhfai = (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚)
𝜎𝜎𝑥𝑥�  (3) 

Where 𝑥𝑥𝑖𝑖  is the height of child i, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 is the median height from the reference population of the same 

age and gender and 𝜎𝜎𝑥𝑥 is the standard deviation of 𝑥𝑥 of the same reference population (Imai, et al., 2014; 

World Health Organization, 1997). They use anthropometric data available in the LSMS (2006) to calculate 

the zhfai for each individual. In this case we are interested in children between the ages of 5 and 19.  

The zhfai ranges from −∞ to ∞ as it is measured in standard deviations from the mean which is zero. If a 

child’s zhfai is under two standard deviations below the mean, the child is chronically malnourished or 

“stunted” (World Health Organization, 1997). Figure 3.a and 3.b show the 𝑧𝑧ℎ𝑓𝑓𝑓𝑓𝑖𝑖 distribution for the whole 

population and for our sub-sample of children born 30 days before/after the cut-off. As Table 1 shows, the 

average zhfai for children between 5 and 19 is -1.11, and approximately 19% of children in this age range 

are chronically malnourished, that is, have a zhfai under -2 (red line). In our sub-sample21 the average is -

1.14 and the prevalence is 21%. 

Table 1 Descriptive statistics of dependent variable: 𝑧𝑧ℎ𝑓𝑓𝑓𝑓𝑖𝑖 

Variable Obs. Mean Std. Dev. Min Max 
zhfa (all) 18968 -1.11 1.07 -5.9 4.97 
D. Malnutrition (all) 18968 0.19 0.39 0 1 
zhfa (sub-sample) 195 -1.14 1.11 -4.92 1.68 
D. Malnutrition (sub-sample) 195 0.21 0.41 0 1 

 

 

 

  

 
21 Of children born 60 days before/after the cut-off. 
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Figure 4 Distribution of z-score of height-for-age in 2012 among 5- to 19-year-olds in Ecuador 

 
a. Distribution of full sample 

 

 
b. Distribution of sub-sample of children close to the cut-off point (30 days before and after) 

5.2. The assignment variable: days born before/after crisis 

In this study we focus exclusively on the children born just before/after 1 Jan 1999 (12 to 13 years old). The 

assignment variable (Si) is the number of days the child was born before or after the crisis. The children 
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born on the day of the crisis will have an 𝑆𝑆𝑖𝑖 value equal to zero while the children born before the crisis will 

have a negative 𝑆𝑆𝑖𝑖 value and those born after the crisis, a positive 𝑆𝑆𝑖𝑖 value. Table 2 provides descriptive 

statistics of 𝑆𝑆𝑖𝑖 for the children born 30 days before/after the crisis. 

Table 2 Descriptive statistics of the assignment variable 𝑆𝑆𝑖𝑖  

Variable Obs. Mean Std. Dev. Min Max 
𝑆𝑆𝑖𝑖  196 -1 17 -30 30 

Figure 5 is a scatterplot with a local polynomial regression line of the z-score of height-for-age by the 

running variable 𝑆𝑆𝑖𝑖 with a 15-day bandwidth (panel (a)), and with a 30-day bandwidth (panel (b)). We 

estimate a separate local polynomial regression on each side of the cut-off in order to visually represent 

the drop in the z-score of height-for-age which occurs on the day of the crisis, i.e. at 𝑆𝑆𝑖𝑖 = 0  (see Appendix 

4 for box plot representations of the z-score of height-for-age for different bandwidths around the cut-off). 

Figure 5 Scatterplot and local polynomial of 2012 z-score for sample of children born 15/30 days before/after crisis  

 
 (a) 15-day bandwidth (b) 30-day bandwidth 

6. Results 

Before presenting the results, we justify our choice of bandwidth, polynomial order, and kernel function. 

After that, we also report on various robustness checks. 

6.1. Choosing a bandwidth 

Choosing a bandwidth within which we are comfortable assuming both observable and unobservable 

characteristics are randomly assigned is key to this method. A general rule is that the larger the window, 
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the higher the probability that co-variates might affect or be driving the outcome. The window must be 

sufficiently small so that ‘as good as random’ is a reasonable assumption and sufficiently large so that the 

sample size is large enough to assume the hypothesis test will have adequate power to reject the null 

hypothesis when it is false (Cattaneo, et al., 2018).  

In order to select an appropriate window, we use what Cattaneo et al. (2018) refer to as the data-driven 

method where the information provided by relevant pre-determined co-variates is taken as an indicator 

for exogeneity. In this section we present two exogeneity tests. The first simply involves selecting 

observable characteristics that would be otherwise correlated with our running variable, 𝑆𝑆𝑖𝑖, everywhere 

except near the cut-off. The second is a probit model testing for observable differences between treatment 

and control groups. 

In relation to the former, one variable which should be correlated with 𝑆𝑆𝑖𝑖 might be weight. As 𝑆𝑆𝑖𝑖 increases, 

the weight of the child also increases. We can see in Model 1 of Table 3 that weight has a strong correlation 

with 𝑆𝑆𝑖𝑖 when the assignment variable has no bandwidth (see also Figure 6). However, when we use a 30- 

or 15-day bandwidth, there is no significant relationship between weight and age —see Models 2 and 3 in 

Table 3, and Figure 7. 

In relation to the latter, we run 5 probit models using dummy treat as the dependent variable (Table 4). 

This way, we can test for the significance of various observable characteristics on selection into treatment. 

Age is significant when using the 30-day bandwidth, which is expected given it is one of the two variables 

which is used to construct the outcome variable height-for-age. However, with the 15-day bandwidth the 

results are optimal as none of the covariates are significant. Nevertheless, it is worth noting that there are 

87 observations in the 15-day model (1), while in the 30-day model (4) there are 172 observations. We 

believe this may be a crucial factor given a small sample may not have sufficient power to reject a null 

hypothesis when it is not significant. Additionally, the 30-day model (4) also presents a highly exogenous 

probit model, given we expect the age variable to be significant. In any case, in our results we present both 

the 30- and the 15-day bandwidth models given both seem to be robust to observable characteristics 

influencing selection into treatment. 

Table 3 Correlation between 𝑆𝑆𝑖𝑖  and weight of child 

 Model 1 
No Bandwidth 

Model 2 
15-day Bandwidth 

Model 3 
30-day Bandwidth 

Weight -186.641*** 0.031 -0.005 
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 (0.58) (0.07) (0.13) 

Cons 6038.381*** -0.628 -1.061 

 (31.44) (3.63) (6.26) 

R2 0.633 0.002 0.000 
N 60058 101 196 

 
Notes: Results of an OLS regression of z-scores on weight and a 
constant. Standard deviations below parameter estimates. * denotes 
statistical significance at 10%, ** at 5%, and *** at 1%. 

Table 4 Probit model of relevant observables for selection into treatment for various bandwidths 

 Model 1 Model 2 Model 3 Model 4 Model 5 
1 Jan 1999 15 days 20 days 25 days 30 days 35 days 
Ln(income pc) 0.0490 -0.0351 -0.0946 -0.0634 -0.0756 
 (0.195) (0.171) (0.151) (0.136) (0.127) 
D health 0.485 0.0719 0.138 -0.335 -0.306 
 (0.932) (0.767) (0.736) (0.616) (0.611) 
Age in months -0.00270 -0.00534* -0.00843*** -0.00882*** -0.0101*** 
 (0.00373) (0.00319) (0.00264) (0.00243) (0.00236) 
Mother’s schooling -0.0157 -0.0191 -0.000929 -0.00967 0.00419 
 (0.0448) (0.0405) (0.0345) (0.0309) (0.0289) 
D female -0.0258 -0.0240 -0.190 -0.306 -0.364* 
 (0.291) (0.250) (0.223) (0.207) (0.196) 
D indigenous -0.502 -0.313 0.0411 0.201 0.190 
 (0.569) (0.556) (0.436) (0.414) (0.412) 
D afro-ecuadorian -0.0558 -0.383 -0.399 -0.237 -0.250 
 (0.996) (0.969) (1.015) (0.616) (0.624) 
D montubio 0.428 0.611 0.950 0.987 0.414 
 (0.802) (0.791) (0.790) (0.787) (0.655) 
D Quito -0.192 -0.833 -0.618 -0.473 -0.616 
 (0.901) (0.638) (0.514) (0.503) (0.454) 
D Rural 0.140 -0.0704 -0.0519 0.0723 0.0834 
 (0.373) (0.305) (0.265) (0.238) (0.225) 
D food 0.489 0.285 0.272 0.527 0.520 
 (0.955) (0.732) (0.699) (0.698) (0.695) 
D malnutrition -1.102** -0.957** -1.178*** -1.119*** -0.979*** 
 (0.545) (0.475) (0.427) (0.400) (0.379) 
z-score -0.278 -0.297 -0.349** -0.313** -0.307** 
 (0.200) (0.186) (0.158) (0.143) (0.138) 
N 87 112 146 172 193 
Notes: Standard deviations below parameter estimates. * denotes statistical significance at 10%, ** at 5%, and *** at 1%. 
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Figure 6 Scatter and local polynomial with confidence intervals relation between running variable and weight bandwidth of 5000 
days 

 

 

Figure 7  Relation between running variable and weight. Scatter and local polynomial with confidence intervals. 

  
 (a) 15-day bandwidth (b) 30-day bandwidth 

 

6.2. Choosing the correct functional form 

A polynomial of order one, i.e. a linear functional form, may lead to an inaccurate jump at the cut-off given 

its lack of flexibility. A higher order polynomial can increase accuracy by increasing flexibility. However, it 

may also increase the variability of the treatment effect estimator. Cattaneo at al. (2018) recommend the 

linear estimation because it is the best tradeoff between simplicity, precision, and stability. We present 
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linear, quadratic and cubic models because, in finite samples, the ranking between different local 

polynomial estimators may differ from the asymptotic characteristics obtained in very large samples. 

In this section, we apply two formal tests to guide us on the choice of polynomial, as recommended by Lee 

and Lemieux (2010). The first one is the Akaike information criterion (AIC),22 see Table 5. We present the 

AIC for linear, quadratic, and cubic models and for our two selected bandwidths: 15 and 30 days. The results 

seem to indicate that the cubic model is the recommended functional form for the 30-day bandwidth while 

the quadratic form is recommended for the 15-day model (see Appendix 5 for the AIC test over various 

bandwidths).  

Table 5 AIC for various bandwidths and polynomial orders 

Bandwidth 
Polynomial 

Order 
Treatment 

effect AIC 
15 1 -0.82** 298.7 
15 2 -1.94*** 293.7 
15 3 -1.6** 297.1 
30 1 -0.103 599.37 
30 2 -0.895** 595.34 
30 3 -1.68*** 594.30 

* denotes statistical significance at 10%, ** at 5%, and *** at 1% 

The second test consists in including a series of bin dummies in the linear and non-linear models in order 

to see if there are significant jumps outside of the cut-off. Any significance in a bin dummy would signal a 

lack of flexibility of the polynomial order in terms of describing the behavior of the data. If there are 

significant dummies, we increase the polynomial order until all bin dummies are not significant (Lee & 

Lemieux, 2010). 

We created bin dummies separately for each side of the bandwidth. We test various bin numbers (see 

discussion in Appendix 6) from 4 bin to 16 bins for each bandwidth. In all the specifications, be it linear, 

quadratic, or cubic, none of the bin dummies are significant. In other words, the number of bins, and 

therefore, the number of observations in the bins, do not seem to influence the results: the bin dummies 

are not significant; therefore, the models seem to be flexible enough to capture the behavior of the 

observations around the cut-off. 

 
22 𝐴𝐴𝐴𝐴𝐴𝐴 = −2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�ψ�� + 2𝑛𝑛 where 𝑙𝑙�ψ�� is the maximum value of the likelihood function and 2𝑛𝑛 is the number of 
parameters in the model. 
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We report on the 8-bin model for the 15-day bandwidth as it seems to be the intermediate level between 

number of bins and number of observations within each bin (see Appendix 6). We present the 16-bin model 

for the 30-day bandwidth as we have more observations and therefore can increase the number of bins. In 

Table 6, we present descriptive statistics of our bin dummies in relation to 𝑆𝑆𝑖𝑖. We can see that for the 15-

day bandwidth we have approximately 10 observations (except in bin 5) in each bin, and for the 30 day 

bandwidth we have just over 10. Figures 8 and 9 provide and illustration of the bins. 

Tables 8 and 9 show the RD models with the bin dummies for the 15 day and 30-day bandwidth respectively. 

As mentioned above, none of the bin dummies are significant (see Appendix 6 for additional models) in 

either the 15- or the 30-day bandwidth. Additionally, the treatment effect is not significant in any of the 

models. We suppose that the dummies are washing away the effect of the cut-off. In any case, this indicates 

that there are no jumps outside of the cut-off which may be affecting the ability of the polynomial 

specification to capture the behavior of the data. Therefore, taking both the AIC and the bin dummies into 

account we conclude that the quadratic model is probably the better fit for the 15-day model and the cubic 

model is probably the best fit for the 30-day model. 

Table 6 Number of observations (15-day bandwidth, 8 bin) 

Bins Obs. Min Max 
1 12 -15 -9 
2 12 -8 -6 
3 9 -5 -3 
4 10 -2 -1 
5 20 0 3 
6 12 4 5 
7 13 7 10 
8 13 11 15 

 

Table 7 Number of observations (30-day bandwidth, 16 bins) 

Bins Obs. Min Max 
1 15 -30 -27 
2 10 -26 -25 
3 13 -24 -22 
4 15 -21 -17 
5 8 -16 -11 
6 14 -10 -7 
7 10 -6 -4 
8 12 -3 -1 
9 14 0 2 
10 12 3 4 
11 13 5 7 
12 11 8 13 
13 13 14 17 
14 14 18 21 
15 11 22 25 
16 11 26 30 
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Figure 8. Eight bins before and after cut-off for 15-day bandwidth 

  

 

Figure 9. Sixteen bins before and after cut-off for 30-day bandwidth 

  

Table 8 Regression discontinuity (15-day bandwidth, various polynomial forms, OLS regression) 8 bin dummies 

 OLS1 OLS2 OLS3 
 b/se b/se b/se 
DTreat 2.155 -0.240 -0.293 
 (2.17) (3.15) (3.40) 
Running -0.144 0.332 0.650 
 (0.12) (0.47) (0.90) 
DTreat*Running 0.153 -0.248 -0.547 
 (0.17) (0.51) (0.94) 
Running2  0.022 0.074 
  (0.02) (0.13) 
DTreat*Running2  -0.028 -0.084 
  (0.02) (0.14) 
Running3   0.002 
   (0.01) 
DTreat*Running3   -0.002 
   (0.01) 
1bn.cbin . . . 
 . . . 
2.cbin 0.686 0.506 0.776 
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 (0.73) (0.75) (0.99) 
3.cbin 1.876 1.081 1.490 
 (1.03) (1.28) (1.62) 
4.cbin 2.930* 1.129 1.299 
 (1.35) (2.19) (2.25) 
5.cbin -0.153 -0.229 -0.340 
 (1.47) (1.49) (1.93) 
6.cbin -0.144 -0.366 -0.467 
 (1.14) (1.23) (1.65) 
7.cbin 0.283 0.041 0.001 
 (0.77) (0.92) (1.03) 
8.cbin . . . 
 . . . 
_cons -3.307* -0.916 -0.760 
 (1.46) (2.71) (2.77) 
R2 0.160 0.173 0.174 
N 100 100 100 
* denotes statistical significance at 10%, ** at 5%, and *** at 1% 

 

Table 9 Regression discontinuity (30-day bandwidth, various polynomial forms, OLS regression) 16 bin dummies 

 OLS1 OLS2 OLS3 
 b/se b/se b/se 
DTreat -2.154 -3.635 -3.070 
 (4.26) (4.28) (4.29) 
Running 0.084 0.572* 0.327 
 (0.11) (0.24) (0.40) 
DTreat Running -0.103 -0.681* -0.085 
 (0.15) (0.32) (0.51) 
Running2  0.015* -0.005 
  (0.01) (0.03) 
DTreat Running2  -0.012 -0.025 
  (0.01) (0.04) 
Running3   -0.000 
   (0.00) 
DTreat Running3   0.001 
   (0.00) 
1bn.cbin . . . 
 . . . 
2.cbin -0.971 0.118 0.370 
 (0.56) (0.73) (0.80) 
3.cbin -0.049 1.604 1.859 
 (0.73) (1.02) (1.07) 
4.cbin -1.230 1.011 1.043 
 (1.14) (1.50) (1.50) 
5.cbin -1.466 0.769 0.437 
 (1.65) (1.90) (1.95) 
6.cbin -2.701 -1.369 -1.949 
 (2.23) (2.28) (2.40) 
7.cbin -1.856 -1.388 -1.869 
 (2.55) (2.53) (2.60) 
8.cbin -1.600 -2.436 -2.495 
 (2.90) (2.90) (2.89) 
9.cbin -0.537 -0.592 -1.050 
 (2.93) (2.90) (2.91) 
10.cbin -0.563 -0.387 -1.520 
 (2.63) (2.63) (2.73) 
11.cbin 0.019 0.351 -0.979 
 (2.36) (2.43) (2.59) 
12.cbin 0.027 0.530 -0.576 
 (1.92) (2.14) (2.27) 
13.cbin 0.092 0.656 0.252 
 (1.41) (1.79) (1.81) 
14.cbin -0.238 0.251 0.470 
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 (0.99) (1.38) (1.38) 
15.cbin 0.410 0.742 1.215 
 (0.68) (0.94) (0.99) 
16.cbin . . . 
 . . . 
_cons 1.390 2.975 2.698 
 (3.06) (3.11) (3.12) 
R2 0.136 0.162 0.175 
N 195 195 195 
* denotes statistical significance at 10%, ** at 5%, and *** at 1% 

 

6.3. Choosing a Kernel Function 

The kernel function assigns weights to each observation based on its distance to the cut-off point as 

expressed by 𝑆𝑆𝑖𝑖. The triangular kernel function assigns zero weights to all observations outside of the 

selected bandwidth, and positive weights to all observation inside it. This makes the weight reach its 

maximum at the cut-off point and decrease progressively as we move further away from it. The uniform 

kernel gives equal weights to all observations within the bandwidth and the Epanechnikov kernel gives 

quadratic decaying weights to observation within the bandwidth. As Table 10 shows, our estimations are 

not very sensitive to the choice of kernel weights as they are all significant in a similar way within bandwidth 

and functional forms and across kernel functions. For example, the quadratic models with a 15-day 

bandwidth are significant and have a magnitude of approximately 1.8 across all kernel functions, while the 

linear model with a 30-day bandwidth is not significant no matter what kernel specification we use. In the 

remainder of the paper, we present the regressions using the triangle kernel (see Appendix 6 for results 

with various bandwidths). 

Table 10. Average treatment effect with 15- and 30-day  
bandwidth and various choices of kernel functions 

Kernel function Bandwidth Linear Quadratic Cubic 

Uniform 15 -0.82** -1.9*** -1.60* 

Triangle 15 -1.6* -1.79*** -1.39*** 

Epanechnikov 15 -1.3*** -1.8*** -1.59* 

Uniform 30 -0.10 -0.89** -1.68*** 

Triangle 30 -0.40 -1.27** -1.94*** 

Epanechnikov 30 -0.28 -1.15*** -1.95*** 

* denotes statistical significance at 10%, ** at 5%, and *** at 1% 
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6.4. Average Treatment Effect 

Table 11 shows the Average Treatment Effect (ATE) for different bandwidths (between 15 and 30 days) and 

functional forms (polynomial of order zero to two). The ATE is negative and significant for all bandwidths 

and functional forms except one: the 30-day linear model. However, our results are most accurate in the 

quadratic model. Notwithstanding, the significance of the effect across all but one specification is an 

indication of a robust effect. It is worth mentioning that the variability in the ATE seems to increase with 

the bandwidth and decreases with polynomial order (Figure 9). The 15-day bandwidth produces lowest 

variability in the ATE (-1.3 to -1.6) while the 30 day bandwidth produces the highest (-0.41 to -1.94). We 

can see that the linear model produces the highest variability (between -1.3 to -0.41) while the cubic model 

produces the lowest variability (-1.6 to -1.9). 

Importantly, the results indicate that the data seems to have an imbalance in the sample on the left as 

compared to the right of the cut-off. For a bandwidth of 15 days, for instance, we have 40 observations on 

the left of the cut-off and 52 observations on the right. We discuss this issue further in the next section. 

Table 11 Average Treatment Effect and Frequency counts at either side of the cut-off,  
by Bandwidth and Functional Form 

 Observations ATE Estimate 

Bandwidth left of cut-off right of cut-off Linear Quadratic Cubic 

15 40 52 -1.3*** -1.79*** -1.65* 

20 55 68 -0.94*** -1.76*** -1.83*** 

25 71 86 -0.57* -1.62*** -1.89*** 

30 93 97 -0.41 -1.27*** -1.94*** 

* denotes statistical significance at 10%, ** at 5%, and *** at 1% 
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Figure 9 Local polynomial on each side of jump: 1 Jan 1999  
(bandwidth is 30 days, polynomial order is 0, and kernel is Epanechnikov) 

 

 

7. Robustness checks 
In the previous section we have discussed (i) predetermined covariates, (ii) the choice of bandwidth, (iii) 

the choice of functional form, and (iv) the choice of kernel function. This section reviews four robustness 

checks, as proposed by Cattaneo at al. (2018) and Lee and Lemieux (2010): (1) the density of the running 

variable (manipulation of the cut-off), (2) the sensitivity of observations near the cut-off, (3) placebo effects 

or anticipation bias, (4) the covariates with the same cut-off. 

7.1. Density of the running variable (manipulation of the cut-off) 

A basic principle of the RD model is that individuals are unable to determine which side of the cut-off they 

fall into, that is, they are unable to manipulate 𝑆𝑆𝑖𝑖 which determines treatment. If this is true, the number 

of observations just above and below the cut-off should be similar. In our case, there are slightly more 

observations just above the cut-off (58) than just below (43). This is a concern because it reduces the 

credibility of a random assignment to treatment. The condition of equal sample size is not necessary or 

sufficient to an RD model (Cattaneo, et al., 2018), but it does lead to the question of whether it was possible 

for individuals to manipulate 𝑆𝑆𝑖𝑖. In Figure 10 we can see the distribution of the sample across 𝑆𝑆𝑖𝑖. There is a 

notable increase in observations of individuals born on the day of the crisis i.e. on 1 Jan 1999.  
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When we exclude the individuals who were born on 1 Jan 1999, Figure 11 shows that the distribution of 𝑆𝑆𝑖𝑖 

is much more uniform, with a more balanced assignment to treatment (treat:49, control: 43) (see Table 12 

for totals across groups and dates).  

Figure 10 Density of the running variable days born before/after 1 Jan 1999 

 
 (a)15-day bandwidth (b) 30-day bandwidth  

Figure 11 Density of running variable days born before/after 1 Jan 1999 excluding observations at zero 

 
 (a) 15-day bandwidth (b) 30-day bandwidth  

 

Table 12 Control and Treatment group frequencies  
with and without 1 Jan 1999, by bandwidth 

Sample Bandwidth Control Treatment Total 
Entire sample 15 43 58 101 
Sample excluding 1 Jan 1999 15 43 49 92 
Entire sample 30 97 99 196 
Sample excluding 1 Jan 1999 30 97 90 187 
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In order to see if there is a discontinuity in the frequency or density of the assignment variable we use two 

related methods, as proposed by McCrary (2008). The first method involves a two-step process where, 

firstly, the assignment variable is partitioned into equally spaced bins, days in our case, and then, the 

frequency count by day is predicted with a local polynomial regression. Figures 12 and 13 show the McCrary 

smoothened histogram using a 15- and 30-day bandwidth, respectively. Panel (a) in both Figures include 

all observations within each bandwidth, while panel (b) exclude children born on 1 Jan 1999. In any of these 

four cases, the density of the running variable presents no discontinuity, as all jumps fall within confidence 

intervals. The clearest case of no discontinuity is when children born on 1 Jan are excluded and the 

bandwidth is 30 days. 

A second way of checking for a discontinuity in the density of the assignment variable is using the frequency 

counts of the assignment variable as dependent variable in an RD model. Table 13 shows the estimates of 

the RD models for various bandwidths, functional forms, and samples —with or without 1 Jan 1999. At odds 

with the evidence from Figures 12 and 13, Table 13 shows that the discontinuity in the density of the 

assignment variable is significant for some models. Although the discontinuity is only significant in half of 

the models, this seems to present some partial evidence of a jump in the density. We further investigate 

this issue, in the next section, where we test the sensitivity of the outcome and results to the observations 

near the cut-off. 

Table 13 Regression discontinuity model of frequency (density) of assignment variable using day of crisis as cut-off 
(Kernel=triangle) 

Dependent variable: frequency count of assignment variable  
Sample Bw Left Right Linear Quadratic Cubic 
Whole Sample 15 41 52 2.34*** 2.39 0.72 
Sample excluding 1 Jan 1999 15 41 43 0.107 -3.97* -9.31*** 
Whole Sample 30 94 97  2.33*** 2.07* 2.27 
Sample excluding 1 Jan 1999 30 94 88  1.07* -0.105 -1.73 
* denotes statistical significance at 10%, ** at 5%, and *** at 1% 
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 Figure 12 McCrary smoothened histogram of frequency counts in 𝑆𝑆𝑖𝑖 with a 15-day bandwidth 

 
 (a) Including all observations (b) Excluding 1 Jan 1999 
 

 Figure 13 McCrary smoothened histogram of frequency counts in 𝑆𝑆𝑖𝑖 with a 30-day bandwidth 

  
 (a) Including all observations (b) Excluding 1 Jan 1999 
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7.2. Sensitivity of observations near the cut-off 

It is difficult to explain how or why an individual would want to wait until 1 Jan to give birth or why an 

individual would mislead the census taker regarding the date of birth of their children. Perhaps individuals 

who gave birth in difficult, isolated conditions round down the birthdate of their children in order to comply 

with the 30-day registration limit of newly born infants. This is unlikely because registration of infants is 

free for all children even after this date has passed and all the way up to the age of 18 (years of age).23 We 

do not find any evidence of financial rewards given to the first-born children of the year or of any media 

attention provided to these children. In any case, we address this potential problem by measuring the 

sensitivity of the model to the observations around the cut-off.  

The idea of this method is to exclude individuals near the cut-off and to repeat the estimation with the 

remaining sample (Cattaneo et al., 2018). Table 14 presents the estimates of interest of the RD models for 

the different bandwidths and polynomial order, including and excluding 1 Jan 1999. The estimates are 

robust to excluding children born on 1 Jan for our preferred models (i.e. quadratic specification with 15-

day bandwidth and cubic specification with 30-day bandwidth). It is also worth noting that the ATE 

estimates are significant in similar ways across samples. For example, the linear 15-day model is negative 

and significant for both the whole sample and that which excludes children born on 1 Jan. Only in the cubic 

15-day model the estimate is significant for the whole sample and not significant when children born 1 Jan 

are excluded. This may indicate that the effect of the observations near the cut-off is important when the 

sample size is small, i.e. in the 15-day model, which in turn may be an argument in favor of a larger sample 

size.  

Table 14 Sensitivity of RD model to observations near the cut-off  
(15- and 30-day bandwidths, and triangle kernel function) 

Sample Bandwidth Left Right Linear Quadratic Cubic 
Whole Sample 15 40 52 -1.39*** -1.79*** -1.65* 
Sample excluding 1 Jan 1999 15 40 43 -1.33*** -1.71** -0.86 
Whole Sample 30 93 97 -0.41 -1.27*** -1.94*** 
Sample excluding 1 Jan 1999 30 93 88 -0.29 -1.2** -1.96*** 
* denotes statistical significance at 10%, ** at 5%, and *** at 1% 

 
23 https://www.registrocivil.gob.ec/nacimientos/ 
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7.3. Placebo effects and anticipation bias 

We present four placebo effect tests. (i) Anticipation bias, (ii) placebo effects after the crisis; (iii) New Year’s 

Day effect; and (iv) a sub-sample of individuals with no access to financial services and who should not have 

been affected by the bank run. The first three are placebo effects based on alternative cut-offs of the 

assignment variable 𝑆𝑆𝑖𝑖. The last placebo effect is a group of children born into the treatment group who 

should, theoretically, not have been affected by the crisis. A sort of post-crisis control group. 

7.3.1. Measuring placebo effects by changing 𝑆𝑆𝑖𝑖 

The three placebo effects are described in Table 15. We can clearly see that there are no placebo effects 

except on two isolated models: 1 Feb 1999 cubic specification, and 1 Apr 1999 linear specification (note we 

present four different bandwidths for every model in order to establish robustness). 

7.3.1.1. Anticipation bias & placebo effects after the crisis 

Firstly, we emphasize that we find no significant effects on the outcome variable in the months running up 

to the crisis. This is important because it excludes any anticipation bias of the crisis. Given the context 

described above it would have been difficult for individuals to anticipate the collapse of the financial 

system. These robustness checks are an important piece of empirical evidence in favor of our hypothesis. 

We do find two significant effects after the crisis, on 1 Feb and 1 April 1999, represented in Figure 14. We 

plot separate local polynomial regression on each side of the placebo cut-off and find that in neither case 

is the jump outside of the confidence interval. We argue that the effects are found only when using a 

specific bandwidth and polynomial order which is insufficient to prove an exogenous effect. This is why we 

do not see a graphic representation of an effect in Figure 14 (a) or (b). 
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Table 15 Placebo effects before and after the crisis 

Year Day/Month Bandwidth Linear Quadratic Cubic 
Obs. left of 

cut-off 
Obs. right of 

cut-off 
1998 1-Dec 15 0.04 0.33 -0.72 37 56 
1998 1-Dec 20 -0.12 0.28 0.33 49 63 
1998 1-Dec 25 -0.13 0.008 0.46 61 78 
1998 1-Dec 30 -0.15 -0.01 0.2 68 93 
1998 1-Nov 15 0.92 1.26 0.28 43 29 
1998 1-Nov 20 0.69 1.2 1.18 62 45 
1998 1-Nov 25 0.46 1.08 1.3 80 60 
1998 1-Nov 30 0.36 0.89 1.2 98 70 
1998 1-Oct 15 -0.61 -0.83 -0.81 46 55 
1998 1-Oct 20 -0.63 -0.61 -1.0 65 75 
1998 1-Oct 25 -0.63 -0.68 -0.59 87 95 
1998 1-Oct 30 -0.59 -0.7 -0.6 104 105 
1998 1-Sep 15 -0.38 -0.24 0.8 57 55 
1998 1-Sep 20 -0.36 -0.39 0.10 79 71 
1998 1-Sep 25 -0.26 -0.26 -1.18 103 83 
1998 1-Sep 30 -0.15 -0.51 -0.46 125 106 
1998 1-Aug 15 -0.21 -0.22 0.02 53 65 
1998 1-Aug 20 -0.12 -0.25 -0.12 75 99 
1998 1-Aug 25 -0.12 -0.22 -0.27 98 112 
1998 1-Aug 30 -0.13 -0.15 -0.22 117 131 
1999 1-Feb 15 -0.26 -0.32 -1.19* 39 57 
1999 1-Feb 20 -0.28 -0.27 -0.55 53 75 
1999 1-Feb 25 -0.31 -0.26 -0.34 67 92 
1999 1-Feb 30 -0.34 -0.23 -0.34 88 106 
1999 1-Mar 15 0.21 0.80 0.53 49 42 
1999 1-Mar 20 0.18 0.44 0.90 71 65 
1999 1-Mar 25 0.12 0.34 0.77 87 80 
1999 1-Mar 30 0.11 0.20 0.60 105 91 
1999 1-Apr 15 0.28 0.34 1.5 39 77 
1999 1-Apr 20 0.35 0.20 0.70 60 96 
1999 1-Apr 25 0.37 0.25 0.28 76 112 
1999 1-Apr 30 0.42* 0.26 0.26 89 139 
1999 1-May 15 0.33 0.39 0.05 61 60 
1999 1-May 20 0.32 0.34 0.34 85 78 
1999 1-May 25 0.35 0.29 0.36 109 93 
1999 1-May 30 0.41 0.25 0.32 134 113 
1999 1-Jun 15 0.22 0.21 0.37 56 80 
1999 1-Jun 20 0.23 0.29 0.12 75 99 
1999 1-Jun 25 0.19 0.28 0.20 92 119 
1999 1-Jun 30 0.15 0.28 0.28 112 139 

* denotes statistical significance at 10%, ** at 5%, and *** at 1% 
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Figure 14 Local kernel on each side of placebo jump (bw is 30 days, polynomial order is 0, Epanechnikov kernel) 

 
        (a) 1 Feb 1999                                                                          (b) 1 April 1999 

We run a probit model to measure the observable differences between the placebo treatment and control 

groups in both the placebo effects for 1 Feb 1999 and 1 Apr 1999. As above, this will help us determine if 

the samples are similar in their observable characteristics. As we can see in Tables 16 and 17, neither 1 Feb 

1999 nor 1 Apr 1999 effects are driven exclusively by the treatment. In the former, the schooling of the 

mother is significantly higher among the treated, and in the latter, the proportion of children living in Quito 

is significantly lower among the treated. Taking the lack of a consistent effect across polynomial forms into 

consideration, along with the lack of a visible jump in the local polynomial regressions, as well as the 

significant difference in observable characteristics in all bandwidths, we suggest this placebo effect does 

not hold up to robustness checks. 

Table 16 Probit dummy treatment using 1 Feb 1999 as placebo cut-off, measuring effect of observables 

1 Feb 1999 15 days 20 days 25 days 30 days 
 P1 P2 P3 P4 
Ln(income pc) -0.00992 -0.0146 0.0223 -0.0167    
 (0.213) (0.194) (0.177) (0.152)    
D health . 0.620 0.683 0.850    
 . (0.933) (0.920) (0.914)    
Age in months -0.00668 -0.00866** -0.0112*** -0.0142*** 
 (0.00430) (0.00364) (0.00336) (0.00295)    
Mother’s schooling 0.0849** 0.0875** 0.0763** 0.0850*** 
 (0.0416) (0.0386) (0.0337) (0.0326)    
D female 0.225 0.202 0.0878 -0.0543    
 (0.315) (0.279) (0.252) (0.220)    
D indigenous 0.0166 -0.0211 0.0307 0.0127    
 (0.516) (0.476) (0.445) (0.422)    
D afro-ecuadorian . . -1.006 -1.062    
 . . (0.908) (0.920)    
D Montubio . . 1.323** 1.511**  
 . . (0.672) (0.680)    
D Quito -0.642 -0.782 -0.520 -0.451    
 (0.652) (0.630) (0.558) (0.467)    
D Rural -0.136 -0.128 -0.180 -0.103    
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 (0.343) (0.305) (0.283) (0.255)    
D food 0.0368 -0.366 -0.188 -0.0797    
 (0.891) (0.751) (0.703) (0.706)    
D malnutrition 0.700 1.036* 0.455 0.0189    
 (0.659) (0.589) (0.524) (0.456)    
z-score -0.168 -0.0327 -0.271 -0.393**  
 (0.280) (0.236) (0.206) (0.184)    
N 80 103 133 167    
* denotes statistical significance at 10%, ** at 5%, and *** at 1% 

 

Table 17 Probit dummy treatment using 1 Apr 1999 as placebo cut-off, measuring effect of observables 

1 Apr 1999 15 days 20 days 25 days 30 days 
 P1 P2 P3 P4 
Ln(income pc) 0.313 0.121 0.198 0.237*   
 (0.194) (0.167) (0.157) (0.143)    
D health -0.396 -0.170 -0.308 0.0745    
 (0.660) (0.648) (0.536) (0.425)    
Age in months -0.0140*** -0.0135*** -0.0155*** -0.0159*** 
 (0.00401) (0.00314) (0.00289) (0.00270)    
Mother’s schooling -0.0180 -0.000944 -0.0205 -0.0190    
 (0.0411) (0.0370) (0.0346) (0.0320)    
D female 0.110 0.123 0.0441 0.142    
 (0.295) (0.246) (0.222) (0.203)    
D indigenous -0.299 0.0412 -0.0510 0.0974    
 (0.437) (0.390) (0.384) (0.360)    
D afro-ecuadorian -0.123 -0.149 -0.0276 0.212    
 (0.658) (0.636) (0.621) (0.575)    
D montubio 0.657 0.456 0.115 -0.0179    
 (1.010) (0.648) (0.550) (0.519)    
D Quito -1.706** -1.185* -1.439*** -1.514*** 
 (0.758) (0.639) (0.530) (0.479)    
D Rural 0.373 0.0374 0.118 0.0965    
 (0.325) (0.269) (0.248) (0.224)    
D food . . . .    
 . . . .    
D malnutrition 0.448 0.376 -0.0616 -0.100    
 (0.585) (0.468) (0.396) (0.368)    
z-score 0.188 0.0997 -0.0959 -0.146    
 (0.268) (0.215) (0.169) (0.155)    
N 102 141 169 200    
* denotes statistical significance at 10%, ** at 5%, and *** at 1% 

 

7.3.1.2. New Year’s Day effect 

We measure the effect on New Year’s Day in the years preceding the crisis (1994-1998) in Table 18. We 

find no significant effect except for in the 25-day bandwidth cubic specification in 1995. Figure 15 

represents this placebo effect graphically. There is no clear jump in the outcome variable outside of the 

confidence interval on 1 Jan 1995. This indicates there is no robust evidence of an unobservable “New Year 

Day” effect which might affect our outcomes.  

Table 18 Placebo New Year's Day effect 

Year Day/Month bandwidth Linear Quadratic Cubic 
Obs. left of 

cut-off 
Obs. right of 

cut-off 
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1998 1-Jan 15 -0.26 -0.09 0.17 45 52 
1998 1-Jan 20 -0.25 -0.22 0.01 57 65 
1998 1-Jan 25 -0.30 -0.19 -0.12 72 78 
1998 1-Jan 30 -0.11 -0.19 -0.56 56 61 
1997 1-Jan 15 -0.37 -0.38 -0.92 36 36 
1997 1-Jan 20 -0.37 -0.42 -0.39 46 49 
1997 1-Jan 25 -0.28 -0.47 -0.40 54 63 
1997 1-Jan 30 0.01 -0.14 -0.93 66 55 
1996 1-Jan 15 0.08 0.55 0.65 43 22 
1996 1-Jan 20 -0.02 0.32 0.58 60 22 
1996 1-Jan 25 -0.07 0.14 0.51 70 43 
1996 1-Jan 30 -0.11 0.10 0.33 79 56 
1995 1-Jan 15 -0.37 -1.08 -0.56 35 24 
1995 1-Jan 20 -0.08 -0.79 -0.97 44 35 
1995 1-Jan 25 0.03 -0.48 -1.08* 56 45 
1995 1-Jan 30 -0.22 -0.44 -0.46 69 72 
1994 1-Jan 15 -0.30 -0.54 -0.34 27 34 
1994 1-Jan 20 -0.14 -0.51 -0.47 39  48 
1994 1-Jan 25 -0.11 -0.32 -0.69 47 53 
1994 1-Jan 30 -0.26 -0.31 -0.07 83 96 
* denotes statistical significance at 10%, ** at 5%, and *** at 1% 

Figure 15 Local polynomial on both sides of placebo cut off: 1 Jan 1995 (bw=30, polynomial=0, kernel=Epanechnikov) 

 

Table 19 presents various probit models of the dummy treatment using 1 Jan 1995 as a cut-off point. We 

can see that there are no observable characteristics that are significantly different between treatment and 

control groups. However, it is important to highlight the number of observations for a 15-day bandwidth is 

relatively small (40 for both treatment and control). This sample may be too small to have sufficient 

hypothesis testing power. Additionally, most of the control variables are dropped. Once the sample starts 

to approximate a similar size (79 for the 30-day bandwidth) to those used in our main model (87 for 15 day 

bandwidth and 172 for the 30 day bandwidth) we find a significantly higher amount of indigenous children 

in the treatment group. The relatively small sample size coupled with the lack of a consistent effect over 

other sample sizes and polynomial forms leads us to conclude that there is insufficient evidence of a 
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placebo effect on this date. Furthermore, the lack of an effect across various New Year’s Days leads us to 

believe there is no unobservable driver on New Year’s producing the effect of the crisis in 1999. 

Table 19 Probit dummy treatment using 1 Jan 1995 as placebo cut-off, measuring effect of observables 

1 Jan 1995 15 days 20 days 25 days 30 days 
 P1 P2 P3 P4 
Ln(income pc) 0.234 -0.00412 -0.0219 -0.0771    
 (0.537) (0.410) (0.267) (0.242)    
D health 0.802 0.574 0.418 0.295    
 (1.994) (1.658) (1.141) (1.139)    
Age in months -0.0289*** -0.0248*** -0.0177*** -0.0187*** 
 (0.00915) (0.00709) (0.00467) (0.00433)    
Mother’s schooling -0.260 -0.158 -0.0608 -0.0377    
 (0.182) (0.115) (0.0631) (0.0558)    
D female -0.192 0.257 -0.0384 -0.117    
 (0.796) (0.569) (0.420) (0.401)    
D indigenous . . . 1.776*   
 . . . (0.959)    
D afro-ecuadorian . . . .    
 . . . .    
D montubio . . . .    
 . . . .    
D Quito -1.472 -0.510 -0.711 -1.025    
 (1.608) (0.988) (0.772) (0.754)    
D Rural -0.211 0.167 0.469 0.315    
 (0.765) (0.650) (0.445) (0.401)    
D food . . . .    
 . . . .    
D malnutrition 1.552 0.606 0.435 0.485    
 (1.056) (0.758) (0.580) (0.542)    
z-score 0.339 0.103 0.0830 0.0413    
 (0.714) (0.470) (0.314) (0.293)    
N 40 54 70 79    
* denotes statistical significance at 10%, ** at 5%, and *** at 1% 

 

7.3.2. Individuals with no access to banking services as placebo 

The effect of a bank run on individuals who have no access to financial services would be indicative of a 

non-observable driving the effect. We do not have information on whether the parents had access to 

banking services. However, we are able to identify the parents who belong to the lower end of the income 

distribution. We define this as the first decile, which corresponds to households with a per capita income 

between $5.5 and $30 a month. The mean income in the first decile is $21.4 per capita per month when 

using a 90-day bandwidth (see Appendix 10 for descriptive statistics on the income distribution). We 

contend that they are less likely to have access to banking and financial services and test the effect of the 

bank run on this subgroup. Table 20 presents the sample sizes for treatment and control groups for 

different bandwidths. As we can see, the 90-day bandwidth already has a relatively small sample (Treat: 

37, Control: 29) which is why we are unable to reduce the bandwidth further. Table 21 presents the ATE 

for this decile and shows there is no significant effect of the crisis on the sample of children in the first 
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decile. This is probably not because they did not have access to financial services, as, when we decompose 

the distribution into deciles and estimate the ATE within each decile (see Table 22) we do not find effect 

within any decile. This implies that the effect is driven by the variation between the deciles rather than the 

variation within them.  

Table 20 Sample size of first quintile of income distribution by bandwidth 

Bandwidth Control Treatment Total 
365 153 170 323 
180 67 73 140 
90 29 37 66 

Table 21 RD model for first decile of income distribution with various bandwidths and functional forms 

bw N Control N Treat Linear Quadratic Cubic 
365 161 166 0.07 -0.17 0.12 
180 77 77 -0.01 0.38 0.38 
90 32 34 0.22 0.39 -0.10 

Table 22 RD models for 1 Jan 99 by deciles and quintiles 180 days bandwidths 

Decile N left n right Linear Quadratic Cubic 
1 77 77 -0.01 0.38 0.38 
2 82 87 -0.48 -0.75 -0.69 
3 57 54 -0.12 -0.46 -0.71 
4 56 70 0.08 0.15 0.11 
5 61 71 0.34 0.40 0.001 
6 68 71 0.27 0.4 0.5 
7 42 70 0.2 0.74 0.07 
8 54 66 -0.36 -0.1 -0.4 
9 61 64 0.04 0.1 -0.09 
10 67 54 -0.5 -0.51 -0.8 

* denotes statistical significance at 10%, ** at 5%, and *** at 1% 

 

Does this mean there are differentiated effects for poorest and richest? Not exactly. We divide the sample 

into “poor” and “non-poor” by using the 2012 poverty line defined by INEC of $77 per capita per month. 

Table 23 shows that there is a strongly negative and significant effect on the “poor” in all bandwidths and 

functional forms except one while Table 24 shows there are some models which are significant among the 

non-poor. Of course, this exercise does not prove differentiated effects firstly because the sample sizes are 

very small when dividing the group into poor and non-poor, and secondly, because there is no consistent 

effect among the non-poor which makes it difficult to state what is actually happening within that sub-

group. Obviously, demonstrating differentiated effects is not the objective of the paper, however, this 

subsection is here to demonstrate that the lack of an effect in the first decile does not imply a lack of an 

effect among the “poor.” Additionally, it is important to state, in closing this section, that without specific 



38 
 

information on the household’s access to banking services during the crisis, it is not possible to estimate 

the effect of the crisis on this sub-group. It would be interesting to explore this option if this information 

ever is recoded in the future. 

Table 23 RD models for individuals under poverty line ($77 per capita per month) using 1 Jan 99 cut-off and various bandwidths 
and functional forms 

Poor=$77pc N left  N right  Linear Quadratic Cubic 
15 day  39 43 -2.04*** -2.12*** -1.6 
30 day 54 54 -1.12** -1.9*** -2.41*** 

* denotes statistical significance at 10%, ** at 5%, and *** at 1% 
 

Table 24 RD models for individuals over poverty line ($77 per capita per month) using 1 Jan 99 cut-off and various bandwidths 
and functional forms 

Non-poor N left  N right  Linear Quadratic Cubic 
15 day  39 43 -1.2*** -1.93* -1.8 
30 day 54 54 0.1 -0.91 -2.07** 

* denotes statistical significance at 10%, ** at 5%, and *** at 1% 

7.4. Covariates with the same cut-off 

It was also suggested that other baseline covariates might have experienced a jump on 1 Jan 1999. One 

particularly important variable would be the price level. During months running up to the crisis there was 

a non-negligible increase in prices which might also have created a shock through a reduction in the access 

to adequate nutrition. As we can see in Figure 16 there was an inflation shock in August 1998 (with a 5% 

hike in prices) and another in March 1999 (with an additional 14% hike in prices). None of these shocks 

happen simultaneously with the 1% tax or the bank run, and there does not seem to be a price shock which 

happened simultaneously, that is, which had the same cut-off as the bank run. This allows us to argue that, 

at least for the sample of children taken into consideration (those born 30 days before/after the crisis) a 

price shock was not driving the effect. 
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Figure 16. CPI and inflation 1998 - 1999 

 

 

8. Conclusion and discussion 

We find a significant deleterious effect of the outbreak of the 1999 financial crisis on the 2012 z-score of 

height-for-age of children born just before 1 Jan 1999 as compared to those born just after. This natural 

experiment finds an exogenous cut-off which allows us to measure the causal effects of the crisis on the 

health outcomes of children in the long run by using a sharp RD model. 

The unanticipated financial crash is understood as an objective stress shock exposing unborn children to 

pre-natal maternal stress. The resulting change in the fetal environment can cause alterations in the series 

of “switches” which determine whether parts of a genome are expressed or not, such that, the health 

effects of an intra-uterine shock may remain latent though the life cycle (Almond & Currie, 2011). 

Throughout this paper we provide evidence of a robust unanticipated effect. We justify the exogeneity of 

the sample by demonstrating that relevant observable characteristics are not significant determinants of 

selection into treatment. We use a data-driven method to select an appropriate bandwidth, we use the 

Akaike Information Criterion (AIC) as well as a dummy variable test in order to select the polynomial order, 

and, we test the sensitivity of the results to kernel functional forms (Cattaneo, et al., 2018; Lee & Lemieux, 

2010). Additionally, we test for placebo effects in the months and years predating and following the crisis; 
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we examine how the density of the running variable and the observations near the cut-off affect the 

outcome, and, finally, we test to see if other observables have the same cut-off. 

This study contributes to the literature in three ways: (1) we measure the effects of a financial crisis. The 

literature on the contextual variables affecting fetal development are usually limited to famine, natural 

disasters and terrorist attacks. (2) We measure effects in the long term which not only helps better mold 

public policy but paints a more comprehensive picture of the consequences of prenatal maternal stress. (3) 

We provide a method that attempts to identify causal effects while most studies are correlational. In studies 

where there is an exogenous shock there are mostly simple regression methods which compare the before-

after without providing an appropriate counterfactuals. Additionally, we have not found studies which use 

regression discontinuity models or which analyze the long term health effects of pre-natal exposure to the 

1999 Ecuadorian crisis. 

Notwithstanding, there are various challenges that we addressed with the evidence presented in this paper. 

Firstly, despite testing and not finding any anticipation effects in the months before the crisis, we did find 

isolated significant placebo effects in the months after the crisis and on New Year’s Day 1995, although 

they do not hold up to robustness checks. Secondly, there is a slight imbalance in the size of the samples, 

however, we find no evidence the density of the distribution or the observations near the cut-off have an 

effect on the outcome. Finally, despite our attempts, we are unable to test whether individuals with no 

access to financial services were effectively sheltered from the crisis, however, this is not the objective of 

the paper.  

Another point of discussion is that we assume the cut-off is deterministic in increasing stress levels. There 

is an argument to be made that the relationship should be probabilistic, in that, stress can be caused by 

other unobservables which we cannot control for. We argue that there is always a certain percentage of 

mothers who suffer from prenatal maternal stress, and that this percentage would have otherwise been 

similar in the treatment and control group. The only change in the percentage would be that caused by the 

financial crisis.  
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Appendix 1: Jacome 2004 Figures on Ecuadorian Crisis 
Figure 17 Financial assistance to banks (Billions of Sucres) 

 
Source: Jacome, 2004; Source of data cites in Jacome, 2004: Central Bank of Ecuador 

Figure 18 Open Market Operations (Billions of Sucres and annual rate) 

 
BEM: Government Bonds sold to mop up liquidity (Bonos de Estabilizacion Monetaria) 
Source: Jacome, 2004; Source of data cites in Jacome, 2004: Central Bank of Ecuador 
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Figure 19 Net international reserves and interest rate (Millions of US dollars and annual rate) 

 
Source: Jacome, 2004; Source of data cites in Jacome, 2004: Central Bank of Ecuador 

Figure 20 Net international reserve and nominal exchange rate (Millions of US dollars and Sucres per Dollar) 

 
Source: Jacome, 2004; Source of data in Jacome 2004: Central Bank of Ecuador. 
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Appendix 2: Chronology of Crisis 
 

Figure 21 Chronology of Ecuador's 1999 Financial Crisis 
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Appendix 3: Mechanism connecting pre-natal maternal stress to 
deleterious birth outcomes. 
Figure 22 Prenatal maternal stress pathway 

 

Source: C. Holzman, et al., 2001, Pregnancy outcomes and community health: the POUCH study of preterm delivery, Paediatric and perinatal 

Epidemiology, 15(2), pp. 138. 
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Appendix 4: Box plot of cut-off on 1 Jan 1999 
Figure 23 shows the average values (horizonal line within the box) and basic statistics (25th and 75th 

percentiles, in the lower and upper hinge, as well as the upper and lower adjacent values, in each end of 

the whiskers) of the distribution of z-scores per day for children born 15 days before/after the crisis. On 

the horizonal axis we have the running variable where zero is the cut-off day (1 Jan 1999), the negative 

numbers on the left of the cut-off are the number of days the individual was born before the crisis and the 

positive numbers represents the number of days born after the crisis.  

Figure 23 Box-plot z-score height-for-age by day of birth for sample of children born just before/after crisis 

 

In Figure 24 shows the average values and basic statistics of the distribution of z-scores per month a year 

before and after the crisis. That is, now the running variable is measured in months. Therefore, the negative 

values represent the number of months born before the crisis, while the positive numbers represent the 

number of months born after the crisis.  
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Figure 24 Box plot z-score height-for-age by month of birth for 12 months before/after cut-off 
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Appendix 5: Choosing a polynomial form: AIC for various 
bandwidths 
Table 25 AIC for various bandwidths and polynomial orders 

Bw Order Beta dtreat AIC 
30 1 -0.103 599.37 
30 2 -0.895** 595.34 
30 3 -1.68*** 594.30 
25 1 -0.23 522.3 
25 2 -1.05** 506.9 
25 3 -2.14*** 501.7 
20 1 -0.35 392.07 
20 2 -1.7*** 379.9 
20 3 -1.7** 383.8 
15 1 -0.82** 298.7 
15 2 -1.94*** 293.7 

15 3 -1.6** 297.1 
* 0.1 ** 0.05 *** 0.01 *** 0.001 
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Appendix 6: Creating bin dummies for 15- and 30-day bandwidths. 
Creating bin dummies for 15-day bandwidth 
We created bin dummies separately for each side of the bandwidth. In Figure 25 we can see the 
frequency distribution of the running variable before and after the cut-off separately (we set the 
bins in the histogram to be the equivalent of a day each). 

We use the egen xtile command which creates a variable which categorizes the running variable 
by its quantiles. The default value is 2 quantiles which effectively estimates the median. In the 
case of the observations before the cut-off, the median is -6. For those after the cut-off the 
median is 5. If the observations were equally distributed we would expect the median to be 7.5 
on both sides. The fact that both medians are smaller demonstrates that there are more 
observations closer to the cut-off as on both sides, particularly after the cut-off. 

Figure 25 Median of observations before and after cut-off for 15 day bandwidth 

  

Before cut-off      After cut-off 

If we run the regression discontinuity model (using OLS) and integrating the bin dummies (total 
4 by taking the two on each side), we can see that bin 1 is used as a reference bin, therefore, the 
coefficients of bin 3 to 4 are the difference between them and bin 1. For example, bin 2 has a 
positive significant coefficient which implies that the z-score is higher in bin 2 in relation to bin 
1. It also implies that the linear model does not capture this behavior. Additionally, in every 
model bin 4 is dropped due to collinearity. This is probably due to the fact that the treatment 
variable is a dummy dividing the sample into two groups while the bin dummies are dividing the 
sample into 4 groups. Therefore, the bin dummies are almost identical to the treatment dummy 
when they are categorized into a small number of groups. 

Table 26 Regression discontinuity model (15 day bandwidth, various polynomial forms, OLS regression) 4 bin dummies 

 OLS1 OLS2 OLS3 
 b/se b/se b/se 
dtreat99 1.003 -0.713 -0.633 
 (0.90) (1.22) (1.31) 
Z99 -0.010 0.362 0.272 
 (0.07) (0.20) (0.40) 
dtZ99 -0.008 -0.310 -0.196 
 (0.08) (0.24) (0.46) 
Z992  0.021 0.003 
  (0.01) (0.07) 
dtZ992  -0.025 -0.013 
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  (0.01) (0.08) 
Z993   -0.001 
   (0.00) 
dtZ993   0.001 
   (0.00) 
1bn.cbin . . . 
 . . . 
2.cbin 1.181* 0.508 0.428 
 (0.54) (0.64) (0.71) 
3.cbin -0.523 -0.434 -0.499 
 (0.53) (0.54) (0.75) 
4.cbin . . . 
 . . . 
_cons -1.713** -0.218 -0.245 
 (0.65) (1.00) (1.02) 
r2 0.129 0.167 0.168 
N 100 100 100 
* 0.1 ** 0.05 *** 0.01 *** 0.001 

What we can learn from this exercise is that, firstly, we need to think carefully about the 
reference bin. Do we want to compare the behavior of the z-score in relation to the first bin of 
observations which is always going to be those born the earliest before the crisis? Secondly, we 
need to think about the appropriate number of bins given a small number will resemble the 
treatment dummy and a large number will probably not have many observations within each 
category. 

In relation to the former, our objective is to measure bumpiness in the running variable outside 
of the jump in the cut-off (which should be captured by the treatment dummy). Therefore, the 
reference bin should be irrelevant. Perhaps the only rule should be that it should not be at the 
cut-off point because we would expect to see a jump there. 

In relation to the latter, we increase the number of bins to the point where no bin is dropped 
due to collinearity, then we measure how many observations are in each bin. We start with 4 
bins on each side. 

Figure 26 4 bins before and after cut-off for 15 day bandwidth 

  

The regression discontinuity model using 8 bin dummies uses the first bin as the reference and 
also drops the 8th bin due to collinearity. None of the bin dummies are significant, which 
suggests that there are no bumps or jumps outside of the cut-off. Notwithstanding, the 
interaction between treatment dummy and the running variable (our treatment effect) is not 
significant. 
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Table 27 Regression discontinuity (15 day bandwidth, various polynomial forms, OLS regression) 8 bin dummies 

 OLS1 OLS2 OLS3 
 b/se b/se b/se 
dtreat99 2.155 -0.240 -0.293 
 (2.17) (3.15) (3.40) 
Z99 -0.144 0.332 0.650 
 (0.12) (0.47) (0.90) 
dtZ99 0.153 -0.248 -0.547 
 (0.17) (0.51) (0.94) 
Z992  0.022 0.074 
  (0.02) (0.13) 
dtZ992  -0.028 -0.084 
  (0.02) (0.14) 
Z993   0.002 
   (0.01) 
dtZ993   -0.002 
   (0.01) 
1bn.cbin . . . 
 . . . 
2.cbin 0.686 0.506 0.776 
 (0.73) (0.75) (0.99) 
3.cbin 1.876 1.081 1.490 
 (1.03) (1.28) (1.62) 
4.cbin 2.930* 1.129 1.299 
 (1.35) (2.19) (2.25) 
5.cbin -0.153 -0.229 -0.340 
 (1.47) (1.49) (1.93) 
6.cbin -0.144 -0.366 -0.467 
 (1.14) (1.23) (1.65) 
7.cbin 0.283 0.041 0.001 
 (0.77) (0.92) (1.03) 
8.cbin . . . 
 . . . 
_cons -3.307* -0.916 -0.760 
 (1.46) (2.71) (2.77) 
r2 0.160 0.173 0.174 
N 100 100 100 
* 0.1 ** 0.05 *** 0.01 *** 0.001 

We repeat the exercise with 8 bins on each side for a total of 16 bin dummies in the model. 
Again, the first bin is used as a reference and the last (16th) bin is dropped due to collinearity. 
There are no bin dummies which are significant and the treatment has no effect. It would seem 
that the subdivision of the sample be it into 4 or be it into washes away the effect of the jump 
on the day of the crisis. 

 
Figure 27 8 bins before and after cut-off for 15 day bandwidth 
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Table 28 Regression discontinuity (15 day bandwidth, various polynomial forms, OLS regression) 16 bin dummies 

 OLS1 OLS2 OLS3 
 b/se b/se b/se 
dtreat99 5.031 1.974 3.814 
 (5.67) (6.02) (6.56) 
Z99 -0.192 0.723 1.420 
 (0.30) (0.66) (1.01) 
dtZ99 0.049 -0.957 -1.426 
 (0.39) (0.83) (1.35) 
Z992  0.049 0.182 
  (0.03) (0.15) 
dtZ992  -0.044 -0.234 
  (0.04) (0.24) 
Z993   0.005 
   (0.01) 
dtZ993   -0.003 
   (0.01) 
1bn.cbin . . . 
 . . . 
2.cbin 0.182 1.227 1.706 
 (1.38) (1.53) (1.63) 
3.cbin 0.803 1.675 3.026 
 (2.04) (2.11) (2.58) 
4.cbin 1.621 2.182 3.948 
 (2.44) (2.46) (3.13) 
5.cbin 2.513 2.704 4.733 
 (2.71) (2.70) (3.49) 
6.cbin 2.179 1.673 3.877 
 (3.10) (3.11) (3.93) 
7.cbin 3.520 1.494 3.353 
 (3.75) (3.96) (4.46) 
9.cbin -2.494 -2.583 -3.246 
 (3.90) (3.92) (4.50) 
10.cbin -1.919 -1.827 -2.720 
 (3.30) (3.32) (4.44) 
11.cbin -2.032 -1.847 -2.671 
 (2.90) (3.02) (4.07) 
12.cbin -1.328 -1.102 -1.797 
 (2.65) (2.84) (3.66) 
13.cbin -0.832 -0.560 -0.903 
 (2.14) (2.48) (2.74) 
14.cbin -0.588 -0.320 -0.270 
 (1.62) (2.04) (2.06) 
15.cbin -0.249 -0.096 0.203 
 (0.86) (1.12) (1.49) 
16.cbin . . . 
 . . . 
_cons -3.961 -0.815 -1.992 
 (4.12) (4.59) (4.79) 
r2 0.188 0.212 0.221 
N 100 100 100 
* 0.1 ** 0.05 *** 0.01 *** 0.001 

In order to get a better idea of what the bins contain, we present a series of tables with the 
number of observations in each bin. With 4 bins there are approximately 20 observations in 
each bin. With 8 bins there are around 10 in each bin (with the exception of bin 5 with 20). With 
16 bins there are around 6 observations in each bin (with two exceptions near the cut-off). 

Table 29 Number of observations (15 day bandwidth 4 bins) 

bins Obs Min Max 
1 24 -15 -6 
2 19 -5 -1 
3 32 0 5 
4 26 7 15 
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Table 30 Number of observations (15 day bandwidth, 8 bin) 

bins Obs Min Max 
1 12 -15 -9 
2 12 -8 -6 
3 9 -5 -3 
4 10 -2 -1 
5 20 0 3 
6 12 4 5 
7 13 7 10 
8 13 11 15 

 

Table 31 Number of observations (15 day bandwidth, 16 bins) 

bins Obs Min Max 
1 6 -15 -13 
2 6 -11 -9 
3 9 -8 -7 
4 3 -6 -6 
5 4 -5 -5 
6 5 -4 -3 
7 10 -2 -1 
8    
9 9 0 0 
10 11 1 3 
11 6 4 4 
12 6 5 5 
13 7 7 7 
14 6 8 10 
15 7 11 14 
16 6 15 15 

 

Creating bin dummies for 30 day bandwidth 
We use the same method to find the appropriate number of bins for the 30 day model. We find 
very similar results in that, for 4, 8 & 16 bins, the first bin is taken as a reference and last bin is 
dropped from the model due to collinearity. Additionally, the treatment effect is not significant 
in all models, much like when we use the 15 day bandwidth. We suppose that the dummies are 
also washing away the effect of the cut-off. In terms of number of observations, when we carve 
out 4 bins we have approximately 40 observations in each bin, with 8 we have about 20 and 
with 16 we have around 10 (with some exceptions). 

 Figure 28 4 bins before and after cut-off for 30 day bandwidth 
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Table 32 Regression discontinuity (30 day bandwidth, various polynomial forms, OLS regression) 4 bin dummies 

 OLS1 OLS2 OLS3 
 b/se b/se b/se 
dtreat99 -1.088 -2.202* -1.755 
 (0.89) (0.97) (1.03) 
Z99 0.038 0.188** 0.364* 
 (0.03) (0.06) (0.15) 
dtZ99 -0.029 -0.132 -0.232 
 (0.04) (0.08) (0.18) 
Z992  0.005** 0.021 
  (0.00) (0.01) 
dtZ992  -0.006** -0.031 
  (0.00) (0.02) 
Z993   0.000 
   (0.00) 
dtZ993   -0.000 
   (0.00) 
1bn.cbin . . . 
 . . . 
2.cbin -0.678 -0.795 -0.204 
 (0.52) (0.51) (0.69) 
3.cbin 0.143 0.257 -0.101 
 (0.49) (0.49) (0.66) 
4.cbin . . . 
 . . . 
_cons -0.231 0.597 0.397 
 (0.67) (0.72) (0.74) 
r2 0.011 0.056 0.067 
N 195 195 195 
* 0.1 ** 0.05 *** 0.01 *** 0.001 

 

Figure 29 8 bins before and after cut-off for 30 day bandwidth 
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 b/se b/se b/se    
dtreat99 3.938* 3.016 3.114    
 (1.79) (1.82) (1.85)    
Z99 -0.080 0.165 0.254    
 (0.05) (0.10) (0.19)    
dtZ99 0.022 -0.189 -0.187    
 (0.07) (0.14) (0.24)    
Z992  0.008** 0.016    
  (0.00) (0.01)    
dtZ992  -0.009* -0.026    
  (0.00) (0.02)    
Z993   0.000    

-6
-4

-2
0

2

-3
0

-2
9

-2
8

-2
7

-2
6

-2
5

-2
4

-2
3

-2
2

-2
1

-2
0

-1
9

-1
8

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1

-4
-3

-2
-1

0
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 



58 
 

   (0.00)    
dtZ993   0.000    
   (0.00)    
1bn.cbin . . .    
 . . .    
2.cbin 0.808 1.675** 1.629**  
 (0.43) (0.54) (0.55)    
3.cbin 0.960 1.767 1.952*   
 (0.87) (0.91) (0.96)    
4.cbin 2.616* 2.509* 2.622*   
 (1.17) (1.16) (1.18)    
5.cbin -1.696 -1.622 -1.924    
 (1.17) (1.17) (1.23)    
6.cbin -0.883 -0.944 -1.350    
 (0.90) (0.90) (1.04)    
7.cbin -0.608 -0.723 -0.801    
 (0.50) (0.57) (0.58)    
8.cbin . . .    
 . . .    
_cons -3.479** -2.688* -2.608    
 (1.30) (1.32) (1.33)    
r2 0.093 0.127 0.131    
N 195 195 195    
* 0.1 ** 0.05 *** 0.01 *** 0.001 

 

Figure 30 16 bins before and after cut-off for 30 day bandwidth 

  

Table 34 Regression discontinuity (30 day bandwidth, various polynomial forms, OLS regression) 16 bin dummies 

 OLS1 OLS2 OLS3 
 b/se b/se b/se 
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dtZ993   0.001 
   (0.00) 
1bn.cbin . . . 
 . . . 
2.cbin -0.971 0.118 0.370 
 (0.56) (0.73) (0.80) 
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 (0.73) (1.02) (1.07) 
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4.cbin -1.230 1.011 1.043 
 (1.14) (1.50) (1.50) 
5.cbin -1.466 0.769 0.437 
 (1.65) (1.90) (1.95) 
6.cbin -2.701 -1.369 -1.949 
 (2.23) (2.28) (2.40) 
7.cbin -1.856 -1.388 -1.869 
 (2.55) (2.53) (2.60) 
8.cbin -1.600 -2.436 -2.495 
 (2.90) (2.90) (2.89) 
9.cbin -0.537 -0.592 -1.050 
 (2.93) (2.90) (2.91) 
10.cbin -0.563 -0.387 -1.520 
 (2.63) (2.63) (2.73) 
11.cbin 0.019 0.351 -0.979 
 (2.36) (2.43) (2.59) 
12.cbin 0.027 0.530 -0.576 
 (1.92) (2.14) (2.27) 
13.cbin 0.092 0.656 0.252 
 (1.41) (1.79) (1.81) 
14.cbin -0.238 0.251 0.470 
 (0.99) (1.38) (1.38) 
15.cbin 0.410 0.742 1.215 
 (0.68) (0.94) (0.99) 
16.cbin . . . 
 . . . 
_cons 1.390 2.975 2.698 
 (3.06) (3.11) (3.12) 
r2 0.136 0.162 0.175 
N 195 195 195 
* 0.1 ** 0.05 *** 0.01 *** 0.001 

 

Table 35 Number of observations (30 day bandwidth, 4 bins) 

bins Obs Min Max 
1 53 -30 -17 
2 44 -16 -1 
3 50 0 13 
4 49 14 30 

 

Table 36 Number of observations (30 day bandwidth, 8 bins) 

bins Obs Min Max 
1 25 -30 -25 
2 28 -24 -17 
3 22 -16 -7 
4 22 -6 -1 
5 26 0 4 
6 24 5 13 
7 27 14 21 
8 22 22 30 

 

Table 37 Number of observations (30 day bandwidth, 16 bins) 

bins Obs Min Max 
1 15 -30 -27 
2 10 -26 -25 
3 13 -24 -22 
4 15 -21 -17 
5 8 -16 -11 
6 14 -10 -7 
7 10 -6 -4 
8 12 -3 -1 
9 14 0 2 
10 12 3 4 
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11 13 5 7 
12 11 8 13 
13 13 14 17 
14 14 18 21 
15 11 22 25 
16 11 26 30 
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Appendix 6: Descriptive statistics of the income distribution 
Table 26, we can see the mean household income per capita. In Figure 24 we show the histogram 

for income per capita, and in Table 27 we have sample sizes for different bandwidths. 

Table 38 Descriptive statistics of income per capita and the natural log of income per capita 

Variable Obs Mean Std. Dev. Min Max 
Income per capita 60471 136.2 191.9 0 7500 

Ln(income per capita) 57428 4.5 0.9 -0.35 8.9 
 

Figure 31 Histogram of income per capita and the natural log of income per capita 

 

Table 39 Observations in deciles of the income distribution for various bandwidths 

Deciles No bandwidth 365 days 180 days 90 days 
n % n % n % n % 

1 5639 10% 323 13% 140 11% 66 12% 
2 4844 8% 274 11% 136 11% 55 10% 
3 6454 11% 302 12% 152 12% 76 14% 
4 4273 7% 164 6% 81 7% 35 7% 
5 5948 10% 284 11% 143 12% 55 10% 
6 5557 10% 230 9% 113 9% 39 7% 
7 6008 10% 269 11% 118 10% 43 8% 
8 5987 10% 230 9% 115 9% 52 10% 
9 6136 11% 233 9% 116 9% 52 10% 

10 6505 11% 238 9% 122 10% 56 11% 
Total 57351 100% 2,547 100% 1,236 100% 529 100% 

The distribution of income across deciles is fairly uniform in the sample with no bandwidth. This 

behavior is somewhat lost within the 90 day bandwidth and this tendency intensifies with the 30 

day bandwidth. There is a higher percentage of observations in the first and second decile and a 

lower percentage in the middle of the distribution. Also, the number of observations decreases, as 

expected, as the bandwidth decreases.  

In Table 28 we can see the mean income per capita is similar in 90 days bandwidth as compared to 

the sample with no bandwidth in all deciles except on the 10th. In 30 days bandwidth the maximum 
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income per capita in the tenth decile $867, in the 90 day bandwidth it is $1400 while in the whole 

sample it is $7500.  

Table 40 mean income per capita in deciles for 90 day bandwidth as compared to no bandwidth 

Deciles No bandwidth 365 days 180 days 90 days 
μ ypc min ypc max ypc μ ypc min ypc max ypc μ ypc min ypc max ypc μ ypc min ypc max ypc 

1 $19.8 $0 $30 $20.3 $1 $30 $20.5 $2.2 $30 $21.4 $5.5 $30 
2 $38.8 $30.5 $46.6 $38.6 $31 $46.6 $38.7 $31 $46.6 $38.2 $31 $46.2 
3 $54.1 $47 $60 $54.2 $41.6 $60 $54.4 $48 $60 $54.7 $48 $60 
4 $68 $60.5 $73.5 $67.3 $60.5 $73.5 $67.5 $60.5 $73.5 $67.8 $60.5 $73.3 
5 $81.6 $73.6 $90 $81.3 $73.6 $90 $81.4 $73.7 $90 $81.2 $73.7 $90 
6 $99.2 $90.2 $107.1 $98.9 $91.4 $107.1 $98.7 $91.6 $106.6 $98.1 $91.6 $102.8 
7 $121.9 $107.3 $136.6 $121.6 $107.5 $136 $121.7 $107.5 $136 $122.4 $108.3 $135.7 
8 $155.4 $136.8 $176 $ 155.1 $137.1 $176 $154.3 $137.1 $176 $153.7 $137.1 $175 
9 $216.5 $176.5 $266.6 $214.2 $176.5 $266.6 $215.2 $176.5 $266.6 $212.3 $176.5 $266.6 
10 $502.4 $267 $7,500 $481.1 $270 $2375 $458.5 $270 $1400 $444.1 $272.6 $1400 

Total $136.2 $0 $7,500 $118.7 $0 $2375 $119.1 $0 $1400 $118.8 $0 $1400 
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