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Abstract: Cobb-Douglas functions are highly useful and conveniently simple. They are 

widely used in microeconomics to illustrate a multitude of economic phenomena and 

properties. A key characteristic of these functions is that their isoquants are smoothly 

convex, allowing for continuous substitution along them as the prices of goods or 

factors change. They are also popular in research, particularly in computable general 

equilibrium analysis. However, practical references on the generation and use of 

calibrated Cobb-Douglas functions are scarce. In these notes, we aim to fill that gap. 
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1. Introduction 
 

The Cobb-Douglas function (Cobb and Douglas, 1928) is a particular case of the 

constant elasticity of substitution (CES) functions (Arrow et al, 1961) when the said 

elasticity is unitary. It is strictly convex, differentiable, and homothetic. See any micro 

textbook for a proof of these properties. 

The Cobb-Douglas (CD) function is used both in production and demand theory. For 

simplicity, we will assume two inputs in production theory and two consumptions in 

demand theory. In the first case, we have the production function: 

y l k          (1) 

with y being output and l and k being labor and capital services, respectively. The 

parameter  is an efficiency parameter whereas , and  indicate input contribution 

coefficients to production. All these parameters are positive. Under constant returns to 

scale (CRS), +=1, or  = 1  . All these parameters have a physical interpretation. 

In demand theory, the CD utility function u takes the form: 

 1 2
1 2u c c          (2) 

Notice that there is no equivalent to the efficiency parameter in (1), the reason being 

that utility is ordinal: we can multiply by any positive number without affecting the 

underlying preference relation. Similarly, the sum of the coefficients can be 1, or not. 

Provided the sum 1+2 is re-scaled up or down, nothing changes in the preference 

relation. Again, this is because utility is ordinal. 

 

2. The CD cost function in production theory 
 

CRS is a popular assumption in input-output (IO) and computable general equilibrium 

(CGE) analyses for modeling production, in part because estimates of sectoral returns 

to scale are not particularly abundant. For simplicity, we will refer to IO and CGE 

models as “multisectoral” models, as they are indeed models with many sectors. We 

will maintain the CRS assumption here (but see Guerra and Sancho, 2012, and 

Liboreiro, 2019, for exceptions) and, for the most part, omit the indexing of sectors to 

keep notation manageable and improve transparency. When we refer to “output” and 

“inputs,” keep in mind that they always apply to all sectors, even if the notation does 

not explicitly indicate this. 

That being said, let us return to the Cobb-Douglas production function from expression 

(1) and examine production under CRS and competitive behavior. Output y is priced 

at p, while factors l and k are compensated at rates w and r, respectively. From 

microeconomic theory, we know that under these assumptions, the optimal production 

plan results in zero economic profits. In other words, total revenue precisely covers 

total costs, ensuring that price equals average (and marginal) cost at any output level. 
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Given this framework, the firm's optimization problem reduces to minimizing the cost 

of production for any given output level: 

(1 )
.

Min   

ST      with ,  and  given

w l r k

y l k y w r
     (3) 

We will not work out the solution details and refer the reader to any microeconomics 

text (see Varian, 1992, chapter 4). The solution of this problem turns out to be: 

(1 ) 1
1

1

1

1

r
l y

w

w
k y

r

       (4) 

Substituting (4) into the minimizing goal we (can) obtain the cost function for any 

level of output: 

1 (1 ) (1 )( , , ) (1 )c w r y w r y     (5) 

The initial multiplication of coefficients in (5) is kind of ugly so we can hide it using 

the substitution: 

 1 (1 )(1 )       (6) 

There is a very interesting property of the cost function known as “Shephard’s lemma” 

that states that the derivatives of the cost function in relation to the prices of the 

inputs give back the optimal solutions for l and k. Taking the derivative of c(w,r,y) 

with respect to w and after some simplifications we obtain: 

1 1 1( , , )
( ) ( )

c w r y
l w r y w r y c y

w w w
  (7) 

From here we find that the coefficient is nothing but the share of the labor cost over 

total cost: 

( , , )

w l

c w r y
          (8) 

For the capital factor, we would similarly obtain: 

1
( , , )

r k

c w r y
        (9) 
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Summing up, the coefficients  and (1-) in the CD production function indicate 

relevant economic information, namely, the proportion of costs borne by the two 

factors of production. 

 

3. The calibrated CD functions on the production side 
 

Multisectoral models are constructed by integrating economic theory with available 

statistical data, primarily derived from input-output tables (IOT) and social accounting 

matrices (SAM). The latter extend the former by detailing the distribution of factor 

incomes—such as labor and capital—into household incomes, acknowledging that 

households ultimately own most factors of production. However, from the perspective of 

production and cost modeling, the information contained in both databases is 

essentially equivalent. 

Thus, our focus will be on explaining the process of transforming available production 

and cost data into functional expressions that can be used as equations in an economic 

model. This process, known as calibration, involves using the data—subject to the 

restrictions imposed by the theory—to calculate the parameters that define the 

production technology. 

A notable challenge in this process is that IOT and SAM data are expressed in 

monetary units (e.g., euros, dollars), whereas the Cobb-Douglas (CD) production 

function in expression (1) is defined in terms of physical quantities. The table below 

illustrates the typical structure of the available data: 

 

 Table 1: Production and factors 

p y   100€ 

w l     60€ 

r k     40€ 

 

Output y with value p·y = 100€ has been produced using labor l with labor payments 

w·l = 60€ and capital k with capital payments r·k = 40€. We know the currency values 

involved but we do not know the prices or the quantities. The question is how to derive 

the CD production function that fits these data.  

The road to the solution is surprisingly straightforward. Suppose we happened to know 

that p·y = 100€ comes from p = 5€/kg and y = 20kg. It is obvious that if 1 kg costs 5 

€, “one fifth” of a kg will cost 1€. And in 20kg there are 100 “one fifths” of a kg. In 

other words, we can redefine units so that p' = 1€/“fifth of kg” and y' = 100 “fifths of 

kg” and p·y = 5€/kg · 20kg = 1€/“fifth of kg” · 100“fifths of kg” = p'·y'.  

We have found a redefinition of the initial units so that in the new redefined units the 

number of physical units coincides with the given currency value. The value of the 

produced output is 100€ and the number of produced units is 100“fifths of kg”. This 
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redefinition of units is called the standard normalization. The same applies to the value 

paid for labor and capital services. All units are redefined in such a way that all 

redefined units have a value of 1€. 

Thanks to this conjuring trick, we can read the values in the table as if they were units 

of output, labor and capital in the redefined units: y' = 100, l' = 60 and k' = 40, with 

each of these redefined units having a price of 1€. Without loss of generality, we can 

forget about the 'primes' in the redefined magnitudes and simply use: y = 100, l = 60 

and k = 40 knowing that we also have p = w = r = 1. The amazing thing is that we do 

not need to know the name of the new units. They always exist, and this is all that 

matters. 

3.1 The calibrated CD production function 

We can now use expressions (8) and (9) to derive the coefficients in the production 

function. Labor cost for producing output y = 100 is w·l = 60€ while total cost at 

prices w and r is c(y,w,r) =w·l + r·k = 100€. Therefore the share of labor cost on total 

cost is: 

60
0.6

100( , , )

w l

c w r y
 

Similarly for capital: 

40
0.4

100
1

( , , )

r l

c w r y
 

We have so far advanced to having: 

0.6 0.4y l k  

The calibration of  is now simple: 

0.6 0.40.6 0.4

100
1.9601

60 40

y

l k
 

This is the fully calibrated CD production function: 

0.6 0.41.9601y l k  

Plug l = 60 and k = 40 into it, and it yields y = 100. The calibration is correct. 

3.2 The calibrated CD cost function 

We go back to micro theory and recall the cost function in (5) plus the substitution in 

(6): 
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1 (1 ) (1 ) (1 )( , , ) (1 )c w r y w r y w r y  

We now claim that for the calibrated CD cost function we will always have  = 1.  

The reason has to do, once again, with the implicit selection of units. On the one hand, 

all prices are 1 and, on the other hand, total cost equals total income since there are no 

profits. From: 

(1 )( , , )c w r y w r y p y  

and p = w = r = 1 it necessarily follows that  = 1. We can also numerically verify 

that this is so using the parameter values for  and  we obtained during the 

calibration. The calibrated cost function is: 

0.6 0.4( , , )c w r y w r y  

Using Shephard’s Lemma we can derive the calibrated conditional demand functions for 

labor and capital: 

0.4

0.6

( , , )
0.6

( , , )
0.4

c w r y
l

w

c w r y
k

r

r
y

w

w
y

r

 

Conditional demands for labor and capital increase when output increases, and all the 

derivatives have the correct sign: / 0l w , / 0k w , / 0l r , / 0k r . 

When the wage rate increases, demand for labor falls and demand for capital increases 

along the isoquant of level y. Labor becomes relatively more expensive than capital, 

which induces the substitution of labor for capital. Similar considerations, although in 

the opposite direction, apply to increases in r. When capital becomes relatively more 

expensive, labor will substitute for capital.  

3.3 Here comes taxation! 

Unfortunately, things in the real world are a bit more complicated. The exchange of 

goods is often affected by indirect taxes. In the case of labor, it is common for 

payments generated through its use in production to be subject to taxation. The total 

wages paid, which include both the amount received by the worker and the tax 

collected by the government, constitute the total cost borne by the producer. The key 

question is whether, and if so, how the presence of indirect taxes affects the calibration 

process. Consider Table 1, which has been modified to reflect an ad-valorem tax on 

labor payments at rate t = 0.20. 
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Table 2: Production and factors  
with a tax on labor 
 

p y   100€ 

w l     50€ 

t w l    10€ 

r k     40€ 

 

Total labor cost borne by the producer is still 60€ but only 50€ go to the labor factor. 

We can start by distinguishing the net wage rate received by the factor, i.e. w, and the 

gross wage rate paid by the producer, i.e. wg. They are related by wg = (1+t)·w. We 

use the standard normalization so that all prices (net of taxes) are 1 and currency 

values indicate physical output and inputs in redefined units: y = 100, l = 50, k = 40. 

Using (8) and (9) and remembering that now the wage rate relevant for the producer is 

the gross wage rate, we find the shares: 

50 10
0.6

( , , ) 100

g

g

w l

c w r y
 

40
1 0.4

( , , ) 100g

r k

c w r y
 

From expression (1) we obtain: 

1 0.6 0.4

100
2.1867

50 40

y

l k
  

Back to the cost function, we recall expression (6) and plug in the values just obtained: 

0.6 0.4
1 (1 ) 0.6 0.4

(1 ) 0.8964
2.1867

  

We have the production and cost functions fully calibrated: 

0.6 0.42.1867y l k l k  

(1 ) 1

0.6 0.6 0.4

(1 )( , , )

0.8964 (1 )

g tc w r y w r y

t

w r y

w r y
 

The reader can verify that substituting the parameters, unitary prices, factors’ use, and 

indirect tax rate in these expressions results in the correct values for both output (in 

the production function) and total cost (in the cost function). 
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4. The CD functions in demand theory 
 
The solution of the CD utility maximization problem is straightforward. Given an 

income level m and consumption prices p1 and p2 we formulate: 

21
2

1 1 2 2 1 2 .

1Max   

ST      with ,  and  given

u c

m p m p p

c

c p c
 

The solution to this problem gives us (Marshallian) consumption levels: 

1
1

1

2
2

2

m
c

p

m
c

p

  

Observe that the parameters j are the proportion of total income devoted to the 

purchase of each of the consumption goods. Therefore, they are always nonnegative and 

add up to 1. 

 

We can also formulate the expenditure minimization problem: 

1 2

1 1 2 2

1 2 1 2

Min   

ST     .

( , )

with and given ,    

p pe p u c c

u c p pc u
 

This problem is formally equivalent to the cost minimization problem (3) whose 

solution we already know. All we have to do is change the notation. The expenditure 

function will be: 

 1 2 1 2
1 2 1 2

( , )e p u p p u  

Using Shephard’s Lemma once again, we derive conditional demand functions—also 

known as Hicksian or compensated consumption functions in demand theory: 

 1

2

1

2
1

1

1
2

2 2

1

2

( , )

( , )

e p u

p

p
c u

p

pe p u
c u

p p

   

Observe that both the Marshallian and Hicksian demand functions behave properly in 

regard to price changes. Demand for good 1 falls when good 1 becomes relatively more 

expensive than good 2, i.e. p1 goes up and/or p2 goes down. 
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5. The calibrated CD functions on the demand side 
 
Suppose now that we are now given consumption expenditure and income data as 

reported in Table 3.  

 

Table 3: Household expenditure 

m 100€ 

p1·c1   80€ 

p2·c2   20€ 

 

Total expenditure in consumption is 100€ and is equal to income m = 100€. If the 

utility function is assumed to be CD, then all we need to do is calculate the 

expenditure shares: 

1 1
1

2 2
2

80
0.8

100
20

0.2
100

p c

m
p c

m

  

The calibrated CD utility function will be: 

1 2
1 2 1 2

0.8 0.2u c c c c   

Or any monotone positive transformation of u such as: 

 1 2
0.8 0.2123v c c  

 1.6 0.4
1 20.27v c c  

The structure of the expenditure function is also immediate:  

1 2 1 2 1 2
1 2 1 2 1 21.6494( , )e p u p p u p p u  

Since all income is spent, i.e. m = e(p,u) = 100€, this gives us the utility level when 

prices are unitary as u = m/1.6194 = 60.6287. The same utility value is obtained if we 

plug in the consumption vector (c1, c2) = (20, 20) into the calibrated CD utility 

function. 

Let is now face a situation with ad-valorem taxes on consumption. Good 1 is taxed at 

rate t1 = 0.20 and good 2 at rate t2 = 0.25. Table 4 describes the situation. Total 

expenditure and income is 100€ with a total tax collection of 18€. Prices pj are net 

prices (i.e. before taxes). 
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Table 4: Consumption  
with sales taxes. 
 

m 100€ 

p1·c1   50€ 

t1·p1·c1   10€ 

p2·c2   32€ 

t1·p1·c1    8€ 

 
 
From the solution of the utility maximization problem, we can find the shares: 

 

1 1 1
1

2 2 2
2

60
0.6

100
40

0.6
100

(1 )

(1 )

p t c

m
p t c

m

  

This gives us the utility function and initial utility level: 

 1 2 0.6 0.4
1 2 50 32 41.8256u c c   

The expenditure function from the expenditure minimization problem is: 

 1 21 2
1 2 1 1 2 2

( , ) (1 ) (1 )e p u p t p t u   

Since expenditure equals income and initial net prices are 1, we can obtain the utility 

level from: 

 
1 2 1 2

1 2 1 2

0.6 0.4 0.6 0.4

(1 ) (1 )

100
41.8256

0.6 0.4 1.2 1.25

m
u

t t   

Everything works out.  

The calibration of the utility and expenditure functions is correct. The calibration on 

the demand side is somewhat simpler than on the production side for the simple reason 

that utility is ordinal. As a result, the parameter , which is related to the units in 

which inputs are measured, does not appear in the utility function. Alternatively, we 

can express this by stating that, due to ordinality, we can arbitrarily set the parameter 

value to  = 1. However, when this parameter has a structural meaning, as in the case 

of the production function, its value must be determined and preserved during 

calibration, which complicates the determination of the remaining parameters. 
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6. Final remarks 
 

The calibration of parameters to data gives us a simple procedure for determining 

utility and production functions of the Cobb-Douglas class. These calibrated functions 

have the property that they reproduce the available data under the standard 

normalization. They also allow for the calculation of consumption demand and inputs 

demand when, for some reason, prices for consumption goods or for primary inputs 

change. This is typically the case in multisectoral models when equilibrium prices 

adjust to external changes that affect structural or fiscal parameters. 

The calibration procedure is often described for CES function. See Sancho (2009) for 

regular CES functions and Rutherford (2008) for shared CES functions. However, the 

calibration details for CES functions are significantly more complex. Ultimately, we 

must weigh this added technical complexity against the fact that, in many cases, 

reliable estimates of substitution elasticities are either unavailable or conflicting. In 

such situations, we resort to unitary elasticities, meaning Cobb-Douglas functions, 

making the additional calibration effort unnecessary. If we are going to use Cobb-

Douglas functions regardless, then the simpler procedure outlined here is sufficient. 
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