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Abstract

Using large-scale high-granularity data from a food delivery platform and granular
pollution and weather information, we study how PM2.5 fluctuations affect riders’ ab-
senteeism, productivity, and accidents. Exploiting exogenous pollution variation from
inverse boundary layer height, we find that higher pollution increases absenteeism for
all workers and raises delivery times and accident rates only among (e-)bike riders, who
must exert physical effort while working. Affected workers compensate productivity
losses by working longer hours. Monetary incentives mitigate the effects on absenteeism
but do not offset the decline in productivity and appear to exacerbate accident risk.
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1 Introduction

The impact of air pollution on health and mortality has been widely documented by re-

searchers (Chay and Greenstone, 2003; Currie and Neidell, 2005; Guarnieri and Balmes,

2014; Schlenker and Walker, 2016; Zhang et al., 2017; Deryugina et al., 2019) and public

agencies (WHO, 2016; EEA, 2023). Beyond these well-established public health costs, air

pollution may also entail far-reaching economic and social consequences. Recent literature

has examined how pollution affects labor market outcomes and has shown that fluctuations

in air quality can reduce worker productivity (Graff Zivin and Neidell, 2012; Chang et al.,

2016; Adhvaryu et al., 2022; Borgschulte et al., 2024) and labor supply (Hanna and Oliva,

2015; Isen et al., 2017; Holub et al., 2020; Hoffmann and Rud, 2024). Yet, despite this grow-

ing literature, several important questions remain unanswered, particularly regarding the

relative impact of pollution on cognitive and physical abilities, and its simultaneous effects

on multiple dimensions of workers’ productivity and well-being.

We contribute to this literature by examining the impact of air pollution on the perfor-

mance, health, and safety of food delivery riders. These workers offer an ideal setting to

study the effects of pollution: their exposure is high, their tasks are standardized and their

productivity can be measured with precision, and the physical effort required to perform

these tasks varies systematically, depending on the mode of transportation that they use.

Furthermore, their job entails spending a substantial portion of their working time in traffic,

where they are directly exposed to vehicle emissions, a particularly harmful form of air pollu-

tion, as highlighted in the literature (Alexander and Schwandt, 2022). Finally, the increasing

size of the food delivery sector makes this population a policy-relevant one to study, and one

that, with some exceptions (e.g. Papp, 2024), has so far received limited attention. To the

best of our knowledge, our study is the first to evaluate the impact of air pollution on food

delivery riders.

Using a unique dataset of order- and worker-level records from Just Eat, a leading food
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delivery platform, we construct high-granularity measures of absenteeism, productivity (mea-

sured by delivery speed), and accidents, on the basis of 7.2 million orders fulfilled by 7,915

riders across 24 Italian cities between 2021 and 2023. By combining these data with granular

pollution and weather indicators, we assess how fluctuations in air quality affect workers. We

further explore heterogeneity in the effects of pollution by vehicle type – (e-)bikes or scoot-

ers – to examine whether pollution impairs riders’ productivity primarily through physical

or cognitive channels. Moreover, we exploit variation in monetary bonuses across cities and

days, which can increase total pay by as much as 65%, to investigate whether financial incen-

tives mitigate the adverse impact of pollution on labor outcomes. Finally, we assess whether

and how riders attempt to compensate for pollution-induced productivity losses.

Our empirical strategy leverages a rich set of fixed effects, including time, city, and in-

dividual (rider) fixed effects, to control for confounding factors. While important, these

controls may not fully isolate the causal impact of air pollution, as air quality can be in-

fluenced by factors such as road traffic, which also affect absenteeism, safety, and delivery

speed. To address these concerns, we adopt an instrumental variable (IV) approach using

the inverse planetary boundary layer height (IBLH) as an exogenous source of variation in

air pollution. The planetary boundary layer is the lowest part of the atmosphere, where pol-

lutants are trapped. When large-scale air movements compress this layer, pollution becomes

more concentrated, worsening air quality. By instrumenting air pollution with the IBLH

while flexibly controlling for weather conditions, we isolate variations in air quality driven

by atmospheric conditions rather than local economic activity or traffic patterns. Although

relatively recent, this approach has been used in environmental economics and public health

(Schwartz et al., 2017; Godzinski and Castillo, 2021; Curci et al., 2024) under the assumption

that, conditional on weather and seasonality, residual variation in planetary boundary layer

height provides exogenous shifts in pollution levels. We show that increases in IBLH are

consistently associated with short-term increases, i.e. lasting up to two days, in the levels

of air pollution across all cities in our sample. Following the literature, we benchmark our
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estimates using fine particulate matter (PM2.5) as our main pollutant of interest. However,

it is worth noting that our instrument affects the concentrations of most other pollutants,

and our estimates should consequently be interpreted as the estimated effects of air pollution

more generally.

Our findings reveal significant and heterogeneous effects of pollution on riders’ perfor-

mance and safety. A one-standard-deviation increase in PM2.5 (10.7 µg/m3) increases ab-

sences by 1.21 percentage points, corresponding to a 6.6% increase, on average. In absolute

terms, this effect amounts to 94% of the impact of monetary bonuses and 54% of that of 16

mm of precipitation over 24 hours, corresponding to 4 hours of heavy rain1. The result is

robust across different specifications and we do not observe significant differences between

riders using (e-)bikes and those using motor scooters. In contrast, the impact of air pol-

lution on delivery speed is weaker and varies significantly by vehicle type. For riders using

(e-)bikes, a one-standard-deviation increase in pollution results in a 0.7% reduction in speed,

approximately 25% of the effect of four hours of heavy rain (or 16 mm/day) and 15% of the

effect of monetary bonuses. In contrast, no significant effect is observed for scooter riders.

These findings suggest that pollution primarily affects the productivity of riders who are

required to exert physical effort. We also observe a significant increase in the probability

of riders being involved in accidents: a one-standard-deviation rise in pollution leads to 4.2

additional accidents per 10,000 shifts for (e-)bike riders, corresponding to 32% of the effect

of 4 hours of heavy rain. In line with our findings on delivery speed, this effect is driven by

riders using (e-)bikes, highlighting the interaction between physical exertion and exposure

to pollution in influencing safety outcomes. Our results are robust to a series of tests, such

as leave-one-out analyses, the inclusion of additional controls, changing the functional form

of the instrument, and wild bootstrapping to address the limited number of clusters. We

also rule out the possibility that pollution affects food delivery demand, which could bias
1According to the World Meteorological Association, heavy rain is defined as rates in excess of

4 mm per hour.
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our outcomes, by showing that it does not affect potential orders (i.e., the sum of completed

and canceled orders).

A distinctive feature of our analysis is the presence of monetary incentives introduced

by the delivery company to increase worker productivity and reduce absenteeism. Beyond

assessing the overall effectiveness of these incentives, we examine whether they mitigate or

exacerbate the adverse effects of pollution on worker performance. Our results indicate that

bonuses are effective in reducing absenteeism, shortening delivery times, and even in lowering

reported accident rates. Crucially, we find that while monetary incentives substantially

mitigate the effect of pollution on absences, they do not mitigate nor exacerbate its effect

on delivery speed, and appear to amplify the effect of pollution on accident rates among

(e-)bike riders. This highlights the limitations – and potential unintended consequences – of

using financial incentives to address environmentally-driven performance constraints. Our

findings suggest that incentives may encourage riders to work under impaired conditions,

thereby increasing their vulnerability to pollution-related risks. We show that these results

are not driven by the endogeneity of bonus allocation, as the presence of bonuses is not

significantly correlated with food delivery demand in our preferred specification.

We then exploit the unprecedented granularity of our data to examine whether workers

compensate for increased absenteeism among colleagues and/or their own productivity loss

by adjusting labor supply on the intensive margin (i.e., by working longer hours). We find

that riders exposed to higher pollution levels tend to work longer hours without increasing

their total output – but only among (e-)bicycle riders, whose productivity is directly affected

by pollution. Our results suggest a mild decline in total output, indicating that the combined

effect of higher absenteeism, lower productivity, and longer working hours is negative. We

interpret this as evidence that, in a setting where a substantial share of pay is performance-

based, riders attempt to offset their own productivity loss but cannot compensate for their

coworkers’ absences.

We also examine the temporal dynamics of the effect of air pollution on riders. Our anal-
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ysis reveals that the effects of PM2.5 on absenteeism and productivity are contemporaneous

and short-lived: absences respond to pollution levels on the same day and, possibly, the

previous day, while delivery speed is affected only by same-day exposure. We find no clear

evidence of anticipatory or lagged responses, nor of compensation through increased atten-

dance in subsequent days. With respect to accidents, the results are less precise because of

limited statistical power, but suggest a one-day lag between exposure and the manifestation

of effects. These findings support the causal interpretation of our estimates.

The literature on the economic effects of air pollution exposure has been expanding rapidly

(for a comprehensive review, see Hospido et al., 2023). A growing body of research provides

robust evidence that both short-term and prolonged exposure to even moderate levels of

pollution negatively affect workers’ productivity and earnings (Borgschulte et al., 2024; Ler-

outier and Ollivier, 2025). These effects have been documented across a wide range of

domains, including physically demanding jobs (Graff Zivin and Neidell, 2012; Chang et al.,

2016; Adhvaryu et al., 2022), sports performance (Lichter et al., 2017; Mullins, 2018), cog-

nitively intensive tasks (Chang et al., 2019; He et al., 2019; Kahn and Li, 2020; Archsmith

et al., 2020; Sarmiento, 2022; Holub and Thies, 2023), and even strategic decision-making

games (Künn et al., 2023). Recent studies have also begun to shed light on the detrimental

effects of air pollution on workplace safety (Curci et al., 2024; Lavy et al., 2025) and road

safety (Sager, 2019).

In the context of labor supply, both long-term (Isen et al., 2017) and short-term (Hanna

and Oliva, 2015; Aragón et al., 2017; Holub et al., 2020) exposure to air pollution have

been shown to significantly reduce workers’ participation in the labor market. A study

closely related to our own (Hoffmann and Rud, 2024) investigated the impact of pollution on

daily labor supply decisions in Mexico City, and identified a negative, nonlinear relationship

between PM2.5 levels and same-day labor supply, with particularly strong effects on days

characterized by extreme pollution levels.

Our research makes several key contributions to the literature. First, this is the first
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study to explore the adverse effects of air pollution on food delivery riders – an understudied

group of workers, despite their daily and prolonged exposure to road traffic pollution, and

one that offers valuable insights into the broader impacts of air pollution on outdoor occupa-

tions in urban environments. Second, while previous studies have documented productivity

losses in both physically and cognitively demanding tasks, the relative importance of these

two dimensions of worker productivity remains unclear. The fact that food delivery is a

standardized task that can require different combinations of physical and cognitive effort,

depending on the vehicle used by the rider, allows us to show that the impact of air pollution

on productivity increases with the level of physical exertion. Third, although the empirical

literature has examined the effects of pollution on workers’ health, productivity, and, to a

lesser extent, safety, these aspects are typically studied in isolation and across different pop-

ulations and settings, limiting the comparability of findings. Owing to our unique dataset,

we are able to examine these dimensions simultaneously for the first time, and to investigate

workers’ responses on the intensive margin.

The paper proceeds as follows. Section 2 introduces the context of our analysis. Section 3

describes the data in detail, and Section 4 outlines the empirical strategy. Section 5 presents

the main results, while Section 6 reports a series of robustness checks. In Section 7, we

examine the interaction between pollution and bonuses, dynamic effects and adjustments on

the intensive margin of labor supply. Section 8 concludes.

2 Context

2.1 Food Delivery

Technological advancements, shifting consumer preferences, and the expansion of gig em-

ployment have contributed to the growth of the food delivery market in the global economy.

The COVID-19 pandemic further accelerated the adoption of online food ordering and de-
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livery services. By 2023, the global online food delivery market was valued at approximately

$254.52 billion, with projections suggesting it will reach $505.50 billion by 2030 (Grand

View Research, 2024). The sector employs millions of workers worldwide, offering flexible

job opportunities through gig economy platforms. Additionally, food delivery services have

enabled numerous small and medium-sized restaurants to access a wider customer base with-

out the need for extensive in-house delivery infrastructure (Grand View Research, 2024). In

Italy, the focus of this research, the market has mirrored this trend, with its value reaching

€ 1.8 billion in 2023, up from € 360 million in 2018 (The European House Ambrosetti, 2023).

Our study draws on proprietary data from Just Eat, a leading company in the Italian

food delivery market. Just Eat operates in 24 Italian cities.2 Unlike other platforms, Just

Eat directly employs its riders under contracts specifying weekly hours (10, 15, 20, 25, or

30). Riders receive a fixed hourly wage (€ 8.75), a piece-rate payment per order (€ 0.25),

and tips from customers. On average, riders complete 1.5 orders per hour, and assuming an

average tip of € 2 – approximately 10% of the average order value – the variable component

of their pay (piece-rate plus tips) accounts for about one-third of their total earnings.

This contractual arrangement is more structured than those typically offered by other gig

platforms. Riders are assigned and notified of their shifts in advance, and actual hours worked

should match contractual commitments. Despite their contractual obligations, workers fail

to show up in 19% of cases. Only a minority of these absences are justified by a medical

certificate. This presumably reflects frictions in workers’ access to the public health care

services, given the predominance of foreign-born riders, as well as some flexibility on the

part of the company. Indeed, JustEat typically initiates formal disciplinary proceedings

only after a certain number of consecutive unjustified absences. In addition to hindering

their career prospects, absences translate into an income loss, as couriers who fail to show

up do not receive pay for that shift.
2Appendix Figure A.1 illustrates the geographical distribution of our sample.
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During scheduled shifts, riders log into an app that provides delivery instructions. Each

city also has “captains” who oversee operations, support riders, monitor performance, and

ensure compliance with equipment and personnel standards (e.g., backpacks, helmets, and

vests) and that deliveries are made by the contracted individual.3

To increase productivity, Just Eat introduced sizable monetary incentives starting in April

2022. These bonuses, which substantially increased the hourly wage and standard piece-rate

payment, are linked to specific performance targets. In general, all bonus schemes rewarded

attendance and productivity, with variations in their implementation details over time and

across locations. One type of incentive scheme was tied to the number of deliveries per shift,

increasing the piece-rate for deliveries above a certain number during particular days or shifts

(often during peak times such as dinnertime on weekends or holidays). Another incentive

scheme rewarded riders for achieving high attendance and productivity levels in a given

month. Riders in affected cities were notified of the implementation of these incentives a few

weeks in advance. To provide a better understanding of the magnitude of these additional

incentives, workers completing six deliveries in one day could obtain up to €21, or €5.25

per delivery in bonuses. This scheme would thus more than triple the variable part of the

wage (including the assumed tips) and represent a 65% increase in total pay. While other

schemes were comparatively less generous, these bonuses generally represented a very strong

incentive to worker productivity.

2.2 Air Quality in Italy

Italy consistently ranks among the most polluted countries in the European Union, with

air quality levels exceeding regulatory thresholds set by both the EU and the World Health

Organization (WHO)4. In 2022, the average Italian citizen would have gained an additional
3This structure substantially reduces the likelihood that riders informally subcontract their jobs

or work simultaneously for multiple delivery platforms – practices often reported among workers
employed under less formal arrangements.

4https://www.eea.europa.eu/publications/europes-air-quality-status-2024
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nine months of life expectancy if WHO guidelines on fine particulate matter (PM2.5) con-

centrations had been met (Greenstone et al., 2022). For comparison, this value is effectively

zero in the United States, the United Kingdom, and Germany. However, air pollution levels

in Italy are highly heterogeneous. While much of the country, including the islands and

central-southern regions, experiences relatively good air quality, areas such as the Po Valley

consistently record some of the highest particulate concentrations in Europe (EEA, 2023).

This regional disparity is driven by a combination of geographic, climatic, and industrial fac-

tors that contribute to pollution accumulation. Since Just Eat operates exclusively in densely

populated areas where food delivery services are economically viable, the cities in our sample

are all medium-to-large urban centers with high levels of urbanization and pollution. While

the air quality within these cities varies, particulate concentrations are systematically higher

than the national average, reflecting the broader pattern of pollution distribution across the

country.

3 Data

3.1 Just Eat Data and Outcomes of Interest

Our analysis draws on four interconnected datasets from Just Eat, each described in detail

below. We link all the datasets using a unique rider identification code.

Orders. This dataset encompasses all deliveries carried out by the company from June

2021 to June 2023. It contains rich information on each transaction, including the order date,

city, rider identification code, order value (in euros), travel distance, and vehicle type. The

dataset records the GPS-calculated distance from the rider’s starting point to the restau-

rant and from the restaurant to the customer, along with key timestamps: when the rider

accepts the delivery, picks up the food at the restaurant, and completes the delivery at the

customer’s location. In our analysis, we focus on the restaurant-to-customer distance and
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time-to-deliver, as these metrics are independent of the restaurant’s efficiency and more ac-

curately reflect the rider’s performance. The time-to-deliver captures not only travel speed

but also broader dimensions of efficiency, such as optimal route selection, accurate address

identification, and locating the customer’s name on the doorbell. In our analysis, we focus

on the natural logarithm of delivery speed, defined as the optimal GPS-measured distance

from the restaurant to the customer divided by the time elapsed between food pickup and

delivery.5

Additionally, by linking order data with the company’s bonus scheme records, we identify

whether any monetary bonus was active at the time of delivery.

Descriptive statistics for this dataset are presented in Panel A of Table 1. The dataset

includes more than 7.2 million orders, with an average order value of € 20.5. Riders travel an

average distance of 1.9 km per delivery at an average speed of 12.4 km/h from the restaurant

to the customer. 68% of deliveries are completed by (e-)bike, and 32% by scooter. Finally,

3% of all orders are delivered while a bonus scheme is active.

Shifts. This dataset captures all the scheduled shifts for each rider from late August

2021 to June 2023. For every rider-shift, the dataset includes the date, start and end times,

and whether rider was present during the scheduled period. The rider identification code

allows linking completed orders to their respective shifts. Panel B of Table 1 summarizes

this dataset, which covers 1,720,870 shifts with an average duration of 2.6 hours. We define

a dummy variable Absent, that takes a value of 1 for shifts in which the rider was absent,

and 0 when the rider was present.6 Riders failed to show up for their scheduled shifts 19%
5For delivery speed, we winsorize values three interquartile ranges above the third quartile or

below the first quartile.
6In consultation with the Just Eat data managers, we define a rider as absent if both of the

following conditions hold: (i) the rider’s login duration for the shift is zero minutes, and (ii) the
rider completed no deliveries during the shift. This definition ensures that we do not classify those
who were in fact present as absent. It is possible for a rider to have a positive login duration but
complete no deliveries – for example, if they are in training and shadowing a more experienced rider,
or if exceptionally low demand occurs during the shift. At the same time, including the condition
of zero deliveries alongside zero login minutes helps mitigate potential errors in the system tracking
login duration. In 99.5% of the cases, both conditions are simultaneously met.
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of the time, indicating a high absenteeism rate.

Demographics. This dataset provides detailed demographic information on riders, in-

cluding gender, age, nationality, and weekly contracted hours. However, it does not cover the

entire population of riders observed in the orders or shifts datasets (a total of 7,915 riders),

as it derives from two specific snapshots of Just Eat’s rider pool taken in February 2022 and

June 2023. Consequently, demographic data are missing for riders whose contracts ended

before February 2022, or started after February 2022 and ended before June 2023. Panel C

of Table 1 reports that, out of the 2,643 riders for whom demographic data are available,

46% are foreign nationals,7 7% are female, and 25% hold a full-time contract of 30 hours per

week.

Accidents. This dataset covers the period from February 2022 to June 2023 and includes

all accidents or events resulting in damage or injury reported by riders, either during their

shifts or while commuting to work. Reported incidents include falls, collisions, injuries, and

vehicle damage. In total, 2,397 such events are included in the dataset. We define the

Accident rate as the number of events per 100 shifts in a day. Panel D of Table 1 presents

descriptive statistics aggregated at the city-day level, showing that accidents are relatively

frequent, with a reported event every 400 shifts.

3.2 Air Pollution and Weather Data

In our analysis, we merge the data on riders and orders with data on pollution and weather

at the city-day level.

With respect to air pollution, we focus on fine particulate matter (PM2.5), a key pollutant

because of its small size and harmful health effects. PM2.5 can penetrate deep into the lungs

and enter the bloodstream, leading to severe cardiovascular, cerebrovascular, and respiratory

conditions (Bell et al., 2004; Pope III and Dockery, 2006). Both short- and long-term expo-
7The most represented countries of origin are Pakistan (15.8% of all riders), Nigeria (6.38%),

Bangladesh (3.29%), Afghanistan (1.85%), and India (1.44%).
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Table 1: Descriptive statistics – Food Delivery Company data

N Mean SD 10th pct 90th pct

Panel A: Order Level
Value of the order (€) 7156971 20.53 12.52 8.50 36.70
Distance (km) 7156971 1.92 1.09 0.62 3.41
Speed (km/h) 7156971 12.39 7.82 4.80 21.48
Bike/E-bike 7156971 0.35 0.48 0.00 1.00
Scooter 7156971 0.32 0.47 0.00 1.00
Bonus 7156971 0.03 0.16 0.00 0.00
Panel B: Shift Level
Absence 1683046 0.19 0.39 0.00 1.00
Shift Hours 1683046 2.72 2.95 0.00 4.15
Panel C: Rider Level
Foreign 2981 0.47 0.50 0.00 1.00
Female 2981 0.07 0.26 0.00 0.00
Contract >= 25 hours 2981 0.25 0.43 0.00 1.00
Panel D: Day-City Level
Accidents (per 100 shifts) 884691 0.26 5.21 0.00 0.00

Notes: Panel A presents descriptive statistics for food delivery orders; Panel B displays descriptive statis-
tics for rider shifts; Panel C provides descriptive statistics for rider demographics; Panel D summarizes
descriptive statistics for reported accidents.

sure have been linked to increased morbidity and mortality. More broadly, PM2.5 is the most

widely used indicator of air pollution in research on health and economic outcomes (Deryug-

ina et al., 2019; Deschenes et al., 2020; Hoffmann and Rud, 2024). The PM2.5 concentration

estimates are sourced from the Copernicus Atmosphere Monitoring Service (CAMS) and are

provided at a high spatial resolution of 0.1◦ ×0.1◦ (approximately 8km×8km in the setting).

To construct municipality-level daily pollution measures, we compute weighted averages us-

ing an inverse-distance weighting method, drawing from the four nearest grid points to each

city’s residential center.8

Figure A.2 illustrates the distribution of average daily PM2.5 concentrations across the

24 cities included in our sample. The figure highlights substantial heterogeneity in pollution

levels across cities, with northern cities experiencing significantly higher concentrations of

PM2.5 than to those in central and southern Italy do. This spatial variation is consistent
8We derive the location of the residential center from Google Maps.
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with prior evidence on regional disparities in air quality (EEA, 2023).

In Figure 1, we display the daily fluctuations in PM2.5 levels, showing the average con-

centration for all cities as well as for more and less polluted cities (i.e. above or below the

median pollution level). The figure reveals a clear seasonal pattern, with pollution levels

peaking during the winter months, which is likely due to increased heating emissions and

meteorological conditions. However, even within seasons, there are substantial fluctuations

in PM2.5 concentrations, reflecting the influence of weather conditions, local emissions, and

transboundary pollution. For reference, the figure also indicates the 24-hour PM2.5 limit of

25 µg/m3 set by Directive 2024/2881 of the European Parliament for 2030.

Figure 1: Average PM 2.5 over time
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The figure shows the evolution of average daily P M2.5 concentrations over time for the cities in the sample. It reports the
overall average, as well as separate trends for highly polluted and less polluted cities, based on the classification in Figure
A.2. The horizontal line indicates the level set for 2030 by Directive 2024/2881 of the European Parliament for daily P M2.5
concentrations for reference.

We complement these data with information on the planetary boundary layer height

(PBLH), sourced from the Copernicus-ERA5 reanalysis dataset (resolution: 0.25◦ × 0.25◦).

The PBLH represents the lowest part of the atmosphere, where air pollutants are confined.
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From the PBLH data, we construct the inverse planetary boundary layer height (IBLH),

which serves as our instrumental variable for air pollution (see Section 4.2).

Weather data, including daily average temperature, wind speed, and precipitation (total

precipitation in 24 hours, in mm), are also derived from Copernicus-ERA5. All the variables

are aggregated to the municipality level using the same inverse-distance weighting method

employed for PM2.5.9

Table 2 presents descriptive statistics for the air pollution and weather variables.

Table 2: Descriptive statistics – Pollution and Weather

N Mean SD 10th pct 90th pct

Panel A: Pollution Data

PM2.5 18239 15.74 10.71 6.22 32.16
IBLH 18239 3.41 2.43 1.36 7.05
PBLH 18239 0.42 0.24 0.14 0.74
Panel B: Weather Data

Rain (mm) 18239 2.35 6.01 0.00 6.83
Wind Speed (km/h) 18239 8.61 4.64 4.33 15.03
Temperature (◦ C) 18239 16.03 7.96 5.17 26.67

This table presents descriptive statistics for pollution and weather variables, calculated as
daily averages at the municipality level. Values are derived using inverse-distance weighted
averages from the four nearest grid points to each city’s residential center. PBLH (km) and
IBLH (km−1 represent atmospheric boundary layer heights and its inverse.

4 Empirical Strategy

4.1 Estimating Equation

We aim to assess the relationship between pollution and workers’ outcomes by estimating

an equation of the form described in equation (1):
9For PM2.5, IBLH, and wind speed, we winsorize values three interquartile ranges above the

third quartile or below the first quartile.
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yimdl = α1PM2.5md + Weather′
mdα2 + α3Bonusmdl + X′

imdα4 + ϵimdl (1)

where yimdl represents the outcome of interest for rider i in municipality m on day d

observed at the level l, which is either order (when the outcome is speed) or shift (when the

outcomes are absences or injuries). The key explanatory variable, PM2.5md, measures the

level of air pollution in municipality m on day d. Weathermd is a vector of local weather

conditions in municipality m on day d, including daily average temperature (in 20 bins),

wind speed, and Rain (total daily precipitation, in mm). Bonusmd is a binary variable

indicating whether a monetary incentive was offered in municipality m on day d. The term

Ximd represents a vector of fixed effects. Specifically, we include municipality-by-vehicle,

monthly date-by-vehicle, and day-of-the-week fixed effects to account for time-invariant local

characteristics and broader temporal patterns.

In our preferred specification, we would ideally include individual (rider-level) fixed effects

to identify how a given rider’s performance responds to variation in pollution levels. However,

given the size and granularity of our dataset, estimating equation (1) with rider fixed effects

is computationally challenging.

To estimate individual-level responses while maintaining computational feasibility, we

shift from an individual-outcome framework to an analysis aggregated at the municipality-

day-vehicle level (mdv). This approach is also conceptually consistent with our empirical

strategy, as the key treatment variable (PM2.5md) varies only at the municipality-day level.

Accordingly, we aggregate all outcome variables to this level, weighting each cell by the

number of underlying observations.

To retain the ability to control for individual heterogeneity despite working with aggre-

gated data, we compute both raw means and mean-residualized outcomes. Specifically, for

each outcome, we subtract the individual-specific average (calculated over the full sample
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period) from each observation prior to aggregation.10 This residualization effectively controls

for time-invariant rider characteristics, as the inclusion of individual fixed effects in a linear

framework would do, while preserving computational tractability.

While not mathematically identical to the ideal individual-level regression with rider

fixed effects, the aggregate regressions with residualized outcomes can be interpreted as a

simplified yet analogous version of our ideal specification. In the Appendix, we replicate our

main results using individual-level data and individual fixed effects, and obtain estimates

that are virtually identical in both magnitude and statistical significance to those from the

aggregate specification (Table A.1).

This leads us to estimate the following specification:

ỹmdv = α1PM2.5md + Weather′
mdα2 + α3Bonusmd + X′

mdvα4 + ϵmdv (2)

where ỹmdv is the residualized mean outcome in municipality m on day d for riders using

vehicle v (either (e-)bikes or motor scooters), and Xmdv again includes municipality-by-

vehicle, month-by-vehicle, and day-of-week fixed effects. Standard errors are clustered at

the municipality level. In Section 6, we show that results are robust to wild bootstrap

procedures, which perform well even with few clusters (Cameron et al., 2008).

Despite the extensive set of fixed effects and controls we employ, endogeneity concerns

may still arise and must be addressed to establish a causal link between pollution and riders’

performance. First, pollution levels may be endogenous because of their strong correlation

with road traffic, which is among the main sources of air pollution. Traffic not only generates

pollutants but also directly affects riders’ performance and safety by increasing the likelihood

of accidents and increasing the delivery time, thus confounding the relationship between

pollution and productivity.
10Since some riders may use more than one type of vehicle, we compute individual-specific

averages separately for each vehicle. In other words, we residualize the outcome variables by
subtracting individual-by-vehicle fixed effects before aggregating.
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Moreover, the behaviors and preferences of residents can simultaneously influence both

pollution levels and the demand for food delivery. For example, during holidays, air quality

may improve due to reduced traffic, while riders may be more likely to be absent, leading us

to underestimate the true effect of air pollution on absences.

These intertwined dynamics complicate the identification of a causal effect of air pollution

on labor supply and productivity. The direction of the resulting bias is a priori ambiguous

and may vary depending on the context and timing. Recognizing these potential sources of

endogeneity is essential for an accurate interpretation of our results and motivates the need

for a strategy to isolate the impact of pollution from confounding factors.

4.2 Instrumental Variable Approach: Inverse Planetary Bound-

ary Layer Height (IBLH)

To address the endogeneity concerns associated with pollution, we employ an instrumental

variable (IV) strategy using the inverse planetary boundary layer height (IBLH). This ap-

proach has been previously used in research on the health effects of air pollution (Schwartz

et al., 2017; Godzinski and Castillo, 2021; Curci et al., 2024), as it provides exogenous vari-

ation in air quality.

The planetary boundary layer is the lowest part of the atmosphere, where pollutants

are typically trapped because of limited vertical mixing. When its height (i.e. the PBLH)

decreases, pollutants become confined within a smaller atmospheric volume, leading to higher

concentrations. Conversely, when PBLH increases, pollutants disperse into a larger volume

of air, reducing their concentration. Theoretically, this should lead to an inverse linear

relationship between pollution levels and PBLH, which we exploit by using IBLH as an

instrument.

The thickness of the planetary boundary layer is influenced primarily by solar heating

and atmospheric turbulence, making it highly seasonal. However, it is also subject to exoge-
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nous fluctuations driven by upper-atmospheric dynamics and interactions with the Earth’s

surface. After controlling for geographic location, weather, and seasonality, these variations

generate plausibly exogenous shocks to pollution levels, independent of local emission sources

such as traffic or industrial activity. We leverage these variations to identify the causal effect

of pollution on worker performance.

Table 3 presents the first-stage regression results, which confirm a strong and significant

association between higher IBLH and increased PM2.5 concentrations. Figure 2 illustrates

the dynamic nature of this relationship, showing that pollution is affected by same-day and,

to a lesser extent, by previous-day IBLH, indicating its immediate and short-lived impact on

pollution levels. Moreover, the figure provides further validation of the temporal exogeneity

of the instrument, as future IBLH is not associated with current pollution levels.11

11Note that our instrumental variable also affects the concentration of all the main pollutants,
not only of PM2.5. Thus, while our estimates are based on PM2.5, they also encompass the adverse
effects of most other pollutants.
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Table 3: IBLH and PM2.5: First-Stage Estimates

PM2.5

(1) (2) (3) (4) (5)

IBLH 3.1332*** 2.8140*** 2.7349*** 2.7298*** 2.4081***
(0.1514) (0.1561) (0.1476) (0.1474) (0.1408)

F-Stat 428.31 324.92 343.4 343.02 292.65
N 18239 18239 18239 18239 18239
R2: .51 .64 .70 .70 .73
Mun FE - Y Y Y Y
Month FE - - Y Y Y
DOW - - - Y Y
Weather - - - - Y
Mean dep 15.74 15.74 15.74 15.74 15.74
SD dep 10.71 10.71 10.71 10.71 10.71
Mean IBLH 3.41 3.41 3.41 3.41 3.41
SD IBLH 2.43 2.43 2.43 2.43 2.43

Notes. This table reports the results of the first-stage regression of PM2.5 concentrations on the inverse
planetary boundary layer height (IBLH) and control variables. Weather controls include daily average
temperature (20 bins), wind speed, and precipitation (mm). Standard errors are clustered at the city
level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Figure 2: First stage - Dynamic Effect
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The figure shows the estimated coefficients (with 90% confidence intervals) from regressions of PM2.5 concentration on multiple
leads and lags of the inverse planetary boundary layer height (IBLH). The models include city and time fixed effects (month and
day of the week), weather controls (daily average temperature (20 bins), wind speed, and precipitation (mm)) and a dummy
variable equal to one on days with monetary incentives in a given city.
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To support the credibility of the monotonicity assumption for our instrument, we have

replicated the first-stage regression after including an interaction term between municipality

fixed effects and IBLH. The results of this test are summarized in Appendix Figure A.3, which

shows that the association between IBLH and PM2.5 is positive and significant for all cities

individually, thus supporting the monotonicity assumption of the instrument. Furthermore,

the residual bin plot in Appendix Figure A.4 confirms the linearity of this relationship.

In conclusion, the first-stage regression and supporting analyses establish IBLH as a strong

and consistent predictor of air pollution (PM2.5), validating its suitability as an instrumental

variable in our empirical framework.

5 Main Results

5.1 Absences

We begin by analyzing the impact of air pollution on riders’ absences. Table 4 summarizes

the results, with progressively richer sets of controls across columns.

Column (1) presents the OLS estimate from equation (2), controlling for municipality-by-

vehicle month-by-vehicle, and day-of-week fixed effects, for weather conditions and bonuses,

and using the residualized version of the dependent variable, that accounts for rider fixed

effects. The coefficient indicates a positive (marginally not significant at conventional levels)

relationship between PM2.5 levels and absences. Columns (2)-(5) report the IV estimates,

following the methodology described in subsection 4.2. Column (2) includes only month-

by-vehicle, city-by-vehicle, and day-of-week fixed effects. In column (3), we residualize the

dependent variable to account for unobserved individual heterogeneity. Column (4) adds

controls for weather conditions, including rainfall, wind speed, and temperature. Our most

complete specification, presented in column (5), further includes a dummy for the presence

of monetary incentives.
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Table 4: Effect of Air Pollution on Share of Riders Absent in a City on a Given Day

OLS 2SLS 2SLS 2SLS 2SLS RF
(1) (2) (3) (4) (5) (6)

PM25 (SD) 0.0039 0.0120* 0.0085** 0.0121*** 0.0121***
(0.0026) (0.0070) (0.0038) (0.0042) (0.0040)

Rain 0.0013*** 0.0014*** 0.0014*** 0.0012***
(0.0002) (0.0003) (0.0003) (0.0002)

Bonus -0.0131*** -0.0129*** -0.0131***
(0.0027) (0.0027) (0.0027)

IBLH 0.0024**
(0.0009)

N cells 32145 32145 32145 32145 32145 32147
N observations 1665743 1665743 1665743 1665743 1665743 1665776
Mean dep. .18 .18 .18 .18 .18 .18
First-stage F - 201.05 201.05 169.48 170.26 -
Mun FE Y Y Y Y Y Y
Time FE Y Y Y Y Y Y
Individual Residuals Y - Y Y Y Y
Weather Y - - Y Y Y

Notes. This table reports the estimated effect of air pollution on rider absences. The dependent variable is the share of absent
workers in a city on a given day. Column (1) presents OLS estimates. Columns (2) to (5) report 2SLS estimates using the IBLH as an
instrument for air pollution. Column (6) displays the reduced-form estimates. All regressions include fixed effects for city-by-vehicle,
monthly date-by-vehicle, and day-of-week. The specification labeled Individual residuals uses a residualized version of the dependent
variable, obtained by subtracting each riders individual-specific average. Weather controls include daily average temperature (20
bins), wind speed, and precipitation (mm). Bonus is a dummy equal to one on days when monetary incentives were in place in a given
city. N cells refers to the number of day-city-level cells, while N observations reflects the actual number of individual observations
contributing to the analysis. Standard errors are clustered at the city level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Across specifications, our IV estimates consistently indicate a positive effect of air pollu-

tion on worker absences. The estimates in Column (5) suggest that a one-standard-deviation

increase in PM2.5 raises the probability of absence by 1.21 percentage points, corresponding

to 6.6% of its mean. The reduced form estimates, reported in Column (6), are reassuringly

in line with these results showing that IBLH has a positive and significant effect on riders’

absences.

Beyond the main findings, Table 4 provides additional insights. Rain has a substantial

positive effect on absences: an additional 1 mm of rain during a 24 hour period increases

absences by 0.14 percentage points. Four hours of heavy rain (16 mm) increases absences

by 2.2 percentage points. Column (5) also reveals a strong negative relationship between

monetary bonuses and absences, suggesting that financial incentives promote attendance.12

For comparison, the estimated effect of a one-standard-deviation increase in pollution on

absences is approximately 54% times the effect of 4 hours of heavy rain and approximately

94% of the estimated effect of monetary incentives.

In Table 5 we display the same results, distinguishing between different modes of trans-

portation. Specifically, Panel A reports the coefficients for riders using (e-)bikes, while Panel

B focuses on those using scooters. The findings indicate that the effects of pollution on

absences are positive and statistically significant for both (e-)bike and scooter users, with no

significant differences between the two groups.

5.2 Productivity: delivery speed

Table 6 presents the estimated effects of air pollution on riders’ speed: Panel A reports the

results for all vehicle types, while Panels B and C focus on (e-)bike and scooter riders.

Overall, air pollution seems to have a negative effect on the rider average speed, although

estimates are mostly imprecise and not statistically significant at conventional levels. How-
12We discuss the caveats to the causal interpretation of this estimate in Section 7.1
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Table 5: Effect of Air Pollution on Share Absent – By Vehicle

Panel A: (E-)Bike

OLS 2SLS 2SLS 2SLS 2SLS RF
(1) (2) (3) (4) (5) (6)

PM25 (SD) 0.0046 0.0118 0.0098** 0.0130** 0.0130**
(0.0028) (0.0076) (0.0041) (0.0051) (0.0048)

Rain 0.0014*** 0.0015*** 0.0015*** 0.0013***
(0.0003) (0.0004) (0.0003) (0.0003)

Bonus -0.0177*** -0.0174*** -0.0178***
(0.0039) (0.0039) (0.0038)

IBLH 0.0027**
(0.0011)

N cells 16071 16071 16071 16071 16071 16072
N observations 1085292 1085292 1085292 1085292 1085292 1085311
Mean dep. .19 .19 .19 .19 .19 .19
First-stage F - 227.75 227.75 262.59 266.68 -

Panel B: Scooter

OLS 2SLS 2SLS 2SLS 2SLS RF
(1) (2) (3) (4) (5) (6)

PM25 (SD) 0.0021 0.0124* 0.0056 0.0103*** 0.0103***
(0.0024) (0.0061) (0.0034) (0.0031) (0.0030)

Rain 0.0010*** 0.0011*** 0.0011*** 0.0010***
(0.0002) (0.0002) (0.0002) (0.0002)

Bonus -0.0054 -0.0054 -0.0053
(0.0033) (0.0034) (0.0034)

IBLH 0.0018***
(0.0005)

N cells 16074 16074 16074 16074 16074 16075
N observations 580451 580451 580451 580451 580451 580465
Mean dep. .17 .17 .17 .17 .17 .17
First-stage F - 179.59 179.59 111.45 111.44 -
Mun FE Y Y Y Y Y Y
Time FE Y Y Y Y Y Y
Individual Residuals Y - Y Y Y Y
Weather Y - - Y Y Y

Notes. This table reports the estimated effect of air pollution on rider absences. Panel A focuses on riders using (e-)bikes, while
Panel B on those using scooters. The dependent variable is the share of absent workers in a city on a given day. Column (1) presents
OLS estimates. Columns (2) to (5) report 2SLS estimates using the IBLH as an instrument for air pollution. Column (6) displays the
reduced-form estimates. All regressions include fixed effects for city-by-vehicle, monthly date-by-vehicle, and day-of-week. Weather
controls: daily average temperature (20 bins), wind speed, and precipitation (mm). Bonus is a dummy equal to one on days when
monetary incentives were in place in a given city. N cells refers to the number of day-city-level cells, while N observations reflects the
actual number of individual observations contributing to the analysis. Standard errors are clustered at the city level. Significance
levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6: Effect of Air Pollution on Delivery Speed

Panel A: All Vehicles

OLS 2SLS 2SLS 2SLS 2SLS RF
(1) (2) (3) (4) (5) (6)

PM25 (SD) -0.0030* -0.0071 -0.0043 -0.0046 -0.0051
(0.0015) (0.0044) (0.0041) (0.0039) (0.0032)

Rain -0.0019*** -0.0020*** -0.0019*** -0.0019***
(0.0001) (0.0001) (0.0001) (0.0001)

Bonus 0.0444*** 0.0444*** 0.0444***
(0.0043) (0.0043) (0.0043)

IBLH -0.0010
(0.0007)

N cells 34574 34574 34574 34574 34574 34576
N observations 6905933 6905933 6905933 6905933 6905933 6906102
Mean dep. 11.69 11.69 11.69 11.69 11.69 11.69
First-stage F - 249.94 249.94 206.45 206.94 -

Panel B: (E-)Bike

OLS 2SLS 2SLS 2SLS 2SLS RF
(1) (2) (3) (4) (5) (6)

PM25 (SD) -0.0035** -0.0095** -0.0067 -0.0065* -0.0072**
(0.0014) (0.0043) (0.0041) (0.0036) (0.0031)

Rain -0.0018*** -0.0019*** -0.0018*** -0.0017***
(0.0001) (0.0001) (0.0001) (0.0002)

Bonus 0.0471*** 0.0472*** 0.0472***
(0.0039) (0.0040) (0.0040)

IBLH -0.0015**
(0.0007)

N cells 17328 17328 17328 17328 17328 17329
N observations 4687984 4687984 4687984 4687984 4687984 4688093
Mean dep. 9.85 9.85 9.85 9.85 9.85 9.85
First-stage F - 290.25 290.25 295.55 298.7 -

Panel C: Scooter

OLS 2SLS 2SLS 2SLS 2SLS RF
(1) (2) (3) (4) (5) (6)

PM25 (SD) -0.0018 -0.0011 0.0015 0.0005 0.0004
(0.0027) (0.0061) (0.0052) (0.0054) (0.0047)

Rain -0.0022*** -0.0022*** -0.0022*** -0.0022***
(0.0001) (0.0001) (0.0001) (0.0001)

Bonus 0.0399*** 0.0399*** 0.0399***
(0.0062) (0.0062) (0.0062)

IBLH 0.0001
(0.0008)

N cells 17246 17246 17246 17246 17246 17247
N observations 2217949 2217949 2217949 2217949 2217949 2218009
Mean dep. 15.56 15.56 15.56 15.56 15.56 15.56
First-stage F - 197.8 197.8 132.7 133.25 -
Mun FE Y Y Y Y Y Y
Time FE Y Y Y Y Y Y
Individual Residuals Y - Y Y Y Y
Weather Y - - Y Y Y

Notes. This table reports 2SLS estimates of the effect of air pollution on riders’ speed (in ln). Panel A looks at all the riders in the
sample, while Panel B and C distinguish between riders using (e-)bikes and scooters. Column (1) presents OLS estimates. Columns
(2) to (5) report 2SLS estimates using the IBLH as an instrument for air pollution. Column (6) displays the reduced-form estimates.
All regressions include fixed effects for city-by-vehicle, monthly date-by-vehicle, and day-of-week. Weather controls: daily average
temperature (20 bins), wind speed, and precipitation (mm). Bonus is a dummy equal to one on days when monetary incentives
were in place in a given city. N cells refers to the number of day-city-level cells, while N observations reflects the actual number of
individual observations contributing to the analysis. Mean dep. represents the average value of the dependent variable in its original
(non-logarithmic) form. Standard errors are clustered at the city level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

24



ever, when we disaggregate the results by the type of vehicle used by the riders, a more

nuanced pattern emerges. Specifically, as we show in Panel B of Table 6, both OLS and IV

estimates point toward a negative and statistically significant effect of PM2.5 on the speed of

riders using (e-)bikes: our preferred specification (Column (5)) suggests that a one standard

deviation increase in PM2.5 leads to a 0.72% reduction in the speed of (e-)bicycle riders

(equivalent to -5.3% of a standard deviation13). This effect is approximately 15% of the

impact of monetary incentives (in absolute terms) and 25% of the estimated effect of 4 hours

of heavy rain. In contrast, the effect on scooter riders is small and statistically insignificant

(Panel C). These results are confirmed in the reduced form (Column (6)). Note that these

estimates are based on the selected sample of individuals who attended work despite pollu-

tion (see section 5.1). Assuming positive selection into work – meaning that less healthy or

more pollution-sensitive riders are disproportionately likely to skip shifts on polluted days

– our estimates should be interpreted as a lower bound of the causal effect of pollution on

the performance of the average rider. In other words, stronger effects would be expected

in contexts where workers have stronger incentives to attend work despite being adversely

affected by air pollution.

In both panels of Table 6, the coefficients related to rain and monetary bonuses are pre-

cisely estimated and align with expectations: adverse weather conditions slow down riders,

whereas financial incentives increase their speed.

The stronger impact on riders using (e-)bikes is likely attributable to their greater phys-

ical exertion and direct exposure to air pollution, relative to those of scooter riders. Fine

particulate matter like PM2.5 can impair respiratory function and reduce physical perfor-

mance - effects that are particularly detrimental for cyclists who rely on sustained physical

effort to maintain speed.
13The standard deviation is computed on the dataset aggregated at the city-day level.
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5.3 Accidents

Table 7 reports the estimated effect of air pollution on the frequency of accidents involv-

ing delivery riders (computed as the number of events per 100 shifts in the day). Panel A

presents the results for all the vehicles. The estimates from our preferred specification (Col-

umn (5)) imply that a one standard deviation increase in the PM2.5 concentration leads to

approximately 3.6 additional accidents per 10,000 rider-days – an increase of approximately

13% relative to the mean.

Panels B and C disaggregate the analysis by mode of transportation, revealing substantial

heterogeneity in the effects. Among riders using (e-)bikes (Panel B), the impact of pollution

on accident risk is both positive and precisely estimated. In our most comprehensive model,

a one standard deviation increase in PM2.5 raises the accident rate by approximately 4.3

incidents per 10,000 rider-days. Given a baseline mean of 29 daily accidents per 10,000

rider-days, this corresponds to a relative increase of approximately 15%. In contrast, in our

preferred specification we find no significant effect of pollution on incidents among scooter

users (Panel C), with smaller and generally statistically insignificant estimates across all IV

specifications.14

Although the estimates for this outcome are less precise and display greater variability

across specification – likely due to the relative rarity of such events – these results point

toward a significant positive impact of air pollution on accidents, which appears to be more

pronounced for (e-)bike riders.

Consistent with expectations, we also find that accidents are more frequent on rainy days

for both types of vehicles. Additionally, the presence of monetary incentives is associated

with a lower incidence of accidents among riders who use (e-)bikes. On the one hand, the

lack of a positive effect of monetary incentives on the accident rate suggests that bonuses

do not endanger riders by encouraging reckless driving. On the other hand, the fact that
14Note that the OLS estimate is positive and marginally significant for scooter riders, while still

smaller in magnitude than for (e-)bike riders.
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Table 7: Effect of Air Pollution on Accident Rate

Panel A: All Vehicles

OLS 2SLS 2SLS 2SLS 2SLS RF
(1) (2) (3) (4) (5) (6)

PM25 (SD) 0.0296* -0.0032 0.0065 0.0352** 0.0361**
(0.0148) (0.0261) (0.0239) (0.0167) (0.0170)

Rain 0.0106*** 0.0108*** 0.0107*** 0.0103***
(0.0018) (0.0018) (0.0019) (0.0018)

Bonus -0.0799*** -0.0802*** -0.0789***
(0.0271) (0.0270) (0.0268)

IBLH 0.0070*
(0.0035)

N cells 25419 25419 25419 25419 25419 25421
N observations 865076 865076 865076 865076 865076 865101
Mean dep. .27 .27 .27 .27 .27 .27
First-stage F - 287.15 287.15 229.11 229.75 -

Panel B: (E-)Bike

OLS 2SLS 2SLS 2SLS 2SLS RF
(1) (2) (3) (4) (5) (6)

PM25 (SD) 0.0304 0.0189 0.0312 0.0412* 0.0430**
(0.0193) (0.0248) (0.0222) (0.0202) (0.0202)

Rain 0.0079*** 0.0082*** 0.0080*** 0.0076**
(0.0027) (0.0028) (0.0028) (0.0027)

Bonus -0.1107*** -0.1115*** -0.1096***
(0.0364) (0.0359) (0.0361)

IBLH 0.0088**
(0.0042)

N cells 12708 12708 12708 12708 12708 12709
N observations 544481 544481 544481 544481 544481 544495
Mean dep. .29 .29 .29 .29 .29 .29
First-stage F - 363.68 363.68 368.2 367.65 -

Panel C: Scooter

OLS 2SLS 2SLS 2SLS 2SLS RF
(1) (2) (3) (4) (5) (6)

PM25 (SD) 0.0238* -0.0502 -0.0462* 0.0154 0.0153
(0.0132) (0.0293) (0.0268) (0.0266) (0.0270)

Rain 0.0145*** 0.0144*** 0.0144*** 0.0143***
(0.0020) (0.0020) (0.0020) (0.0020)

Bonus -0.0355 -0.0353 -0.0348
(0.0268) (0.0271) (0.0268)

IBLH 0.0027
(0.0048)

N cells 12711 12711 12711 12711 12711 12712
N observations 320595 320595 320595 320595 320595 320606
Mean dep. .24 .24 .24 .24 .24 .24
First-stage F - 216.26 216.26 142.87 144.59 -
Mun FE Y Y Y Y Y Y
Time FE Y Y Y Y Y Y
Individual Residuals Y - Y Y Y Y
Weather Y - - Y Y Y

Notes. This table reports the effect of air pollution on the number of reported accidents per 100 shifts. Panel A looks at all the riders
in the sample, while Panel B and C distinguish between riders using (e-)bikes and scooters. Column (1) presents OLS estimates.
Columns (2) to (5) report 2SLS estimates using the IBLH as an instrument for air pollution. Column (6) displays the reduced-form
estimates. All regressions include fixed effects for city-by-vehicle, monthly date-by-vehicle, and day-of-week. Weather controls:
average temperature (20 bins), wind speed, and precipitation (mm). Bonus is a dummy equal to one on days when monetary
incentives were in place in a given city. N cells refers to the number of day-city-level cells, while N observations reflects the actual
number of individual observations contributing to the analysis. Standard errors are clustered at the city level. Significance levels:
*** p < 0.01, ** p < 0.05, * p < 0.1.
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bonuses reduce the number of reported accidents suggests that the accidents that do not

prevent riders from working may be reported when bonuses are absent, but not reported

when they are present and the opportunity cost of reporting is greater.

Once again, the effects of pollution are stronger for workers using (e-)bikes and are smaller

and generally not significant among those using motor scooters. This pattern likely reflects

the greater physical effort required to cycle in polluted conditions, which may lead to in-

creased fatigue and, in turn, a higher risk of accidents. This interpretation aligns with our

findings on delivery speed and reinforces the idea that the negative effects of air pollution

are more pronounced when physical exertion is involved.

6 Robustness Tests

In this section, we assess the robustness of our findings through several complementary

analyses.

First, in Table A.1, we show that our main estimates remain virtually unchanged when

the effects are estimated using shift- or order-level data with rider-level fixed effects (as in

Equation 1), rather than municipality-level aggregates of residualized variables (as in Equa-

tion 2). As expected, the results are nearly identical, confirming that our use of aggregate

measures for practical reasons does not affect our conclusions.

Second, we test the sensitivity of our results to more saturated model specifications and

alternative functional forms of the primary instrument. Figures A.5, A.6, and A.7 visually

summarize the results for worker absences, delivery speed, and accidents, respectively. Our

estimates remain stable when we augment the preferred specification with interactions be-

tween day-of-week and municipality fixed effects (D.O.W. by Mun.), which capture local

weekly variation, as well as municipality-specific linear time trends (D.O.W. and L.T. by

Mun.). We also experiment with transformed versions of the IBLH, including binned in-

struments (10 quantile bins), which capture possible nonlinearities in the first stage, and
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interactions between IBLH and municipality fixed effects to allow the effect of IBLH on

air pollution to vary by city. Our results are extremely robust across these different model

specifications, with the only exception being the estimated effect of air pollution on acci-

dents for scooter riders, which becomes marginally statistically significant in one specification

(although it remains smaller in magnitude that the estimated effect for (e-)bike riders).

Third, we investigate whether the results are driven by specific municipalities by re-

estimating our preferred specification iteratively, excluding one municipality at a time. Fig-

ure A.8 presents these leave-one-out results for absences. We conduct analogous analyses

for delivery speed and accidents, restricting the sample to riders using (e-)bikes – the sub-

group for which we observe the strongest effects. The corresponding results are shown in

Figures A.9 and A.10. Our point estimates are generally robust to the exclusion of individual

cities, with the partial exception of Milan and Turin (the second and third most represented

cities in our sample), whose exclusion leads to a decrease and an increase in the estimated

effect on speed, respectively, without affecting our main conclusions.

Fourth, we address concerns about the limited number of clusters in our sample (24

clusters, corresponding to the 24 municipalities) by implementing a wild bootstrap procedure

(Cameron et al., 2008) clustered at the municipality level. The results are reported in

Table A.2. Again, the significance of all our estimates is robust to this procedure.

As air pollution has also been linked to economic activity (Leroutier and Ollivier, 2025)

and even to demand for food delivery (Chu et al., 2020), one final concern is that air pollution

may affect the demand for food delivery and, through this channel, influence our outcomes.

We rule out this possibility by showing that, in our setting, the estimated effect of air

pollution on potential orders (i.e., the sum of completed and canceled orders) is very small

and not statistically significant in our preferred specification. We report the details and

results of this analysis in Appendix C.
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7 Additional results

7.1 Interaction between Pollution and Economic Incentives

The analyses presented thus far demonstrate the impact of pollution on our three main out-

comes: absences, delivery speed, and accidents. Additionally, we document a strong asso-

ciation between monetary incentives and rider performance. Specifically, monetary bonuses

significantly reduce the likelihood of absences (Column (5), Table 4) and accidents (Column

(5), Table 7), while increasing delivery speed (Column (5), Table 6).

Beyond assessing the effectiveness of bonuses, a key question concerns the interaction

between pollution and economic incentives. This analysis is relevant for two main reasons.

First, it may shed light on the mechanisms through which pollution affects performance: if

pollution reduces productivity by generating discomfort, which can be counteracted through

increased effort, then bonuses might attenuate its negative effects. Second, it may uncover

hidden costs of financial incentives. If bonuses encourage riders to work despite exposure to

adverse environmental conditions, they may increase risks to health and well-being – which

manifest in the short term through higher accident rates, and in the medium term through

cumulative health impacts.

In Table 8, we display results from the estimation of a version of equation (2) augmented

with the interactions between Bonusmd and PM2.5md and between Bonusmd and Rain.

Columns (1)–(3) show the results for our coefficients of interest when the outcome variable

is absenteeism. The interaction term between air pollution and the dummy variable indi-

cating the presence of a bonus in a given city-day is negative and statistically significant

for riders who use (e-)bikes (Column (2)). This finding indicates that monetary incentives

can substantially mitigate the adverse effect of pollution on attendance for this group of

workers. These results align with the idea that economic incentives can serve as a powerful

counterbalance to external deterrents to the labor supply, such as environmental hardships.

However, for delivery speed (Columns (4)–(6)), economic incentives do not appear to mit-
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Table 8: Effect of Air Pollution on Riders’ Outcomes - Interaction with Economic Incentives

Share Absent Delivery Speed (ln) Accident Rate

All (E-)Bike Scooter All (E-)Bike Scooter All (E-)Bike Scooter
(1) (2) (3) (4) (5) (6) (7) (8) (9)

PM25 (SD) 0.0130*** 0.0143*** 0.0099*** -0.0055 -0.0077 0.0005 -0.0059 -0.0026 -0.0145
(0.0041) (0.0049) (0.0033) (0.0046) (0.0049) (0.0055) (0.0345) (0.0383) (0.0453)

Bonus -0.0107*** -0.0150*** -0.0034 0.0447*** 0.0490*** 0.0366*** -0.1354** -0.1815** -0.0611*
(0.0026) (0.0034) (0.0035) (0.0056) (0.0057) (0.0078) (0.0522) (0.0680) (0.0345)

Bonus × PM25 (SD) -0.0051* -0.0067** 0.0007 0.0019 0.0005 0.0022 0.1458** 0.1597** 0.0999
(0.0029) (0.0032) (0.0047) (0.0080) (0.0100) (0.0064) (0.0616) (0.0664) (0.0782)

Rain 0.0014*** 0.0014*** 0.0012*** -0.0018*** -0.0017*** -0.0021*** 0.0092*** 0.0073** 0.0119***
(0.0003) (0.0004) (0.0001) (0.0001) (0.0001) (0.0002) (0.0024) (0.0033) (0.0029)

Bonus × Rain 0.0000 0.0004 -0.0004 -0.0007** -0.0008** -0.0007 0.0063** 0.0039 0.0099**
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0005) (0.0030) (0.0037) (0.0045)

N cells 32145 16071 16074 34574 17328 17246 25419 12708 12711
N observations 1665743 1085292 580451 6905933 4687984 2217949 865076 544481 320595
Mean dep. .18 .19 .17 11.69 9.85 15.56 .27 .29 .24
Mun FE Y Y Y Y Y Y Y Y Y
Time FE Y Y Y Y Y Y Y Y Y
Individual Residuals Y Y Y Y Y Y Y Y Y
Weather Y Y Y Y Y Y Y Y Y

Notes. This table reports 2SLS estimates of the impact of air pollution, monetary incentives, and their interaction on rider absences, delivery speed, and accidents. Air pollution and its
interaction with bonuses are instrumented using IBLH and its interaction with the same variable. All regressions focus on the residualized version of the dependent variable, constructed by
subtracting each riders individual-specific average, and include fixed effects for city-by-vehicle, monthly date-by-vehicle, and day-of-week, and weather controls (average temperature in 20
bins, wind speed, and precipitation). Bonus is a dummy equal to one on days when monetary incentives were in place in a given city. N cells refers to the number of day-city-level cells,
while N observations reflects the actual number of individual observations contributing to the analysis. Standard errors are clustered at the city level. Significance levels: *** p < 0.01, **
p < 0.05, * p < 0.1.

igate or exacerbate the effects of pollution. Specifically, while delivery speed is significantly

higher when bonuses are present, for (e-)bike riders – the group most affected by pollution

– the interaction term between bonuses and pollution is indistinguishable from zero. This

suggests that pollution hampers physical performance, likely through increased fatigue, in a

way that financial incentives cannot easily counteract.

The results for accidents (Columns (7)–(9)) further indicate that the presence of bonuses

under high pollution levels may not benefit either workers or firms. While economic incentives

reduce the likelihood of accidents in the absence of pollution (see also 5.3), they increase

it as pollution rises, particularly for (e-)bike riders. The greater effort induced by bonuses

may backfire when riders experience the physical consequences of exposure to pollution. In

other words, by incentivizing riders to work when their conditions are impaired, bonuses

may increase their vulnerability to the adverse effects of poor air quality.

A potential caveat to the causal interpretation of these estimates is that the company’s

decision to introduce monetary incentives may be influenced by observed productivity or
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demand. For instance, if bonuses are implemented in response to declining productivity,

this could create a spurious negative correlation between bonuses and performance, biasing

the estimated effects downward. Conversely, if bonuses are introduced during periods of

unexpectedly high demand, the direction of bias becomes less predictable. According to

the company, however, bonuses are primarily introduced to increase productivity when the

predicted demand is high (e.g., on weekends or during the summer months). Importantly,

these decisions are not based on real-time demand fluctuations, but are instead planned in

advance on the basis of the company’s forecasts of expected demand in a given city and

period. Therefore, controlling for day-of-week, seasonality, and city fixed effects – variables

that are likely used in the firm’s internal demand forecasting – should be sufficient to address

potential endogeneity. In support of this, in Section C of the Appendix, we show that in

our preferred specification, which includes a rich set of time and municipality fixed effects,

bonuses are not significantly associated with actual demand levels. This evidence substan-

tially mitigates concerns about the endogeneity of monetary incentives and reinforces the

causal interpretation of the estimated bonus effects.

The results presented in this section suggest that air pollution may or may not induce

workers to be absent from work, depending on their incentives to attend work. Hence, it is

reasonable to expect that more financially constrained workers are less likely to respond to air

pollution through higher absenteeism, as the stakes are always higher for this category. Since

we lack explicit information on the financial conditions of riders, we test for this possibility

by investigating possible heterogeneous effects of air pollution for foreign-born and native

workers. There are a series of reasons to believe that foreign riders are more likely to have

their food delivery job as their main source of income. For instance, foreign workers are

significantly older and more likely to have a full-time work contract. In Figure 3, we plot

the estimated effects of air pollution on the main outcomes of interest for foreign and native

riders, computed in separate regressions. We find that absenteeism for native workers is

substantially more responsive to air pollution, with the estimated effect of air pollution on
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absences indistinguishable from zero for foreign riders.

Figure 3: Heterogeneous Effects: Coefficient Plot
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This figure presents 2SLS estimates of the effect of air pollution on rider absences, delivery speed, and accidents for foreign-born
and native workers in separate regressions. PM2.5 is instrumented using IBLH. The analysis is restricted to the subset of riders
for whom demographic information is available (2,981 riders). All regressions include the full set of controls and fixed effects
used in the main specification. Dots represent point estimates, and lines indicate 90% confidence intervals.

7.2 Workers’ Compensation on the Intensive Margin

In this section, we exploit the unique level of detail in our data to investigate whether

workers compensate for their colleagues’ absences and/or their own productivity losses by

increasing their labor supply on the intensive margin. Specifically, within the limits imposed

by their scheduled work shifts, workers may compensate for their reduced productivity due

to air pollution along two dimensions that we can directly measure and examine using our

dataset: first, by taking on marginal deliveries, i.e., orders assigned to them toward the end

of their shift; second, by taking shorter breaks between deliveries, i.e., reducing their order
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acceptance time.

There are two main reasons why we might expect workers to increase their labor supply

when pollution levels are high. First, given the increase in absenteeism and the lack of an

effect on demand, the individual workload increases. Second, since the piece-rate component

constitutes a substantial share of riders’ income, any decrease in productivity would result

in income losses unless it is offset by longer working hours. Existing evidence on the wage

elasticity of labor supply in settings similar to ours shows that workers increase work time

or effort in response to wage decreases. This result is explained by a model of reference-

dependent preferences, whereby workers set a daily target for themselves, in terms of income

or deliveries, and adjust labor supply accordingly (Goette et al., 2004; Fehr and Goette,

2007; Camerer et al., 1997).

These results contrast with the predictions of a neoclassical model, whereby workers

substitute labor supply across days to work more on days when wages and productivity are

higher. In addition, labor supply would be negatively correlated with pollution if workers

are physically weakened by higher levels of air pollution, reducing their willingness to remain

active for extended hours, or encouraging them to take longer breaks, thus exacerbating the

overall negative impact of pollution on labor supply.

The presence of these competing predictions highlights the importance of empirically

investigating riders’ response to higher pollution on the intensive margin of labor supply.

The results are presented in Table 9, where we apply our preferred specification to a range of

outcomes related to riders’ effort during a shift. We report estimates for all riders (Panel A)

and by vehicle type (Panels B and C).

Specifically, in Columns (1) and (2), we test whether the total hours worked and the

number of deliveries completed by riders, respectively, respond to air pollution. Column (3)

investigates the average acceptance time (i.e., the time elapsed between receiving an order

request and accepting the delivery). Column (4) examines the effect of pollution on the total

workforce. Finally, in Columns (5) and (6), we investigate cumulative hours and delivery at
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Table 9: Effect of Air Pollution on Additional Outcomes

Panel A: All Vehicles

Workers’ output Total output
Hours Daily Acceptance Tot Day Tot Day Tot Day

Worked Deliveries Time Workers Hours Worked Deliveries
(1) (2) (3) (4) (5) (6)

PM25 (SD) 0.0509** 0.0321 0.0872 -1.1183* -2.0446 -5.4498
(0.0223) (0.0303) (0.2141) (0.6333) (1.7610) (3.5228)

N cells 34575 34575 34575 34575 34575 34575
N observations 1116000 1116000 6905934 34575 34575 34575
Mean dep. 4.36 6.57 24.13 64.38 280.69 422.79
First-stage F 198.71 198.71 206.94 283.59 283.59 283.59
Weights Workers Workers Orders None None None

Panel B: (E-)Bike

Hours Daily Acceptance Tot Day Tot Day Tot Day
Worked Deliveries Time Workers Hours Worked Deliveries

(1) (2) (3) (4) (5) (6)

PM25 (SD) 0.0593** 0.0360 0.2034 -1.9005 -3.0599 -8.8864
(0.0222) (0.0314) (0.1795) (1.1151) (2.9730) (6.1243)

N cells 17329 17329 17329 17329 17329 17329
N observations 770611 770611 4687985 17329 17329 17329
Mean dep. 4.28 6.45 24.69 44.47 190.32 286.83
First-stage F 291.13 291.13 298.7 285.32 285.32 285.32
Weights Workers Workers Orders None None None

Panel C: Scooter

Hours Daily Acceptance Tot Day Tot Day Tot Day
Worked Deliveries Time Workers Hours Worked Deliveries

(1) (2) (3) (4) (5) (6)

PM25 (SD) 0.0259 0.0173 -0.2458 -0.3309 -1.0104 -1.9666
(0.0367) (0.0416) (0.3793) (0.2755) (1.1395) (1.8185)

N cells 17246 17246 17246 17246 17246 17246
N observations 345389 345389 2217949 17246 17246 17246
Mean dep. 4.54 6.83 22.96 20.03 90.91 136.77
First-stage F 129.89 129.89 133.25 281.4 281.4 281.4
Weights Workers Workers Orders None None None
Mun FE Y Y Y Y Y Y
Time FE Y Y Y Y Y Y
Individual Residuals Y Y Y Y Y Y
Weather Y Y Y Y Y Y

Notes. This table reports the estimated effect of PM2.5 concentrations on various measures of workers labor supply and output. Columns
(1) to (3) report rider-level outcomes: total hours worked, number of deliveries completed, and average acceptance time (in seconds).
Column (4) reports the number of active riders per city-day. Columns (5) and (6) aggregate total hours worked and total number of
deliveries completed at the city-day level. Each panel reports results separately for all vehicles (Panel A), (e-)bike riders (Panel B), and
scooter riders (Panel C). All regressions report 2SLS estimates using the IBLH as an instrument for PM2.5. All regressions include fixed
effects for city-by-vehicle, monthly date-by-vehicle and day-of-week, along with flexible weather controls. Regression weights reflect the
unit of analysis: observations are weighted by the corresponding number of workers in Columns (1) and (2), by the corresponding number
of orders in Column (3), and not weighted in Columns (5) and (6). Standard errors are clustered at the city level. Significance levels:
*** p < 0.01, ** p < 0.05, * p < 0.1.
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the municipality-day level (i.e., we replicate the analysis in Columns (1) and (2) looking at

municipality aggregates instead of worker-level aggregates) to investigate the net effect on

total production.

The results in Column (1) indicate that riders who show up for their shifts work longer

hours when pollution is higher. This effect is driven by (e-)bike riders; for scooter riders,

the estimated effect is smaller and not statistically significant. Hence, the increase in hours

worked appears limited to those who experience a productivity loss. These results suggests

that riders are not increasing their labor supply to compensate for absent colleagues (which

would imply a similar response among scooter riders), but rather to offset their own reduced

productivity. Specifically, we estimate a 1.39% increase in hours worked for (e-)bike riders,

which is not too far from the observed decline in productivity for this group. The results in

Column (2) suggest that the increase in hours worked fully compensates for the productivity

decline: the net effect on the total number of deliveries completed is small and statistically

insignificant. These results are consistent with workers having set themselves a target in

terms of the number of deliveries in a shift, and increasing work time to reach that target

on days when pollution slows them down.

We do not observe any significant change in acceptance time (Column (3)), suggesting

that workers do not offset lower productivity by shortening their breaks.15 This result is

plausible, given that the average acceptance time is only 24 seconds, with more than 90% of

orders accepted within one minute. As such, there is limited room for meaningful adjustment

in this dimension.

Finally, when we examine outcomes at the municipality-day level – total number of riders

(Column 4), total hours worked (Column 5), and total deliveries completed (Column 6) – we

observe nonnegligible (although imprecisely measured) reductions in all three measures. For

all groups, the point estimates of the reduction in the total workforce are perfectly compatible
15In this setting, workers are assigned deliveries directly by the company and are required to

accept them. Hence, longer acceptance time does not imply the risk of losing the delivery.
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with the estimated increases in absences, suggesting that the company does not anticipate

the increased absenteeism, and thus does not compensate for these absences by scheduling

more workers. Although only the reduction in the total workforce is statistically significant

at conventional levels, the point estimates are economically meaningful and consistent with

our earlier findings: riders compensate for their own productivity losses, but not for their

colleagues’ absences, resulting in a net decline in total daily output (p = 0.135).

7.3 Dynamic Effect

In this section, we examine the dynamic relationship between air quality and our three main

outcomes of interest: absences, delivery speed, and accidents. To do so, we extend our

preferred specification by including one lead and two lags of PM2.5, which we instrument

with the corresponding leads and lags of IBLH. To ensure consistency, we also include leads

and lags of the control variables (temperature, precipitation, wind speed, and monetary

incentives). In addition to strengthening the causal interpretation of our estimates, this test

may also shed light on the dynamic effect of air pollution.

The results are summarized in Figure 4. The positive and negative associations between

air pollution and absences and productivity discussed in Section 5 mostly appear to be

contemporaneous and short-lived. Although not statistically significant, the association be-

tween absences and air pollution on the previous day is comparable in magnitude to the

contemporaneous relationship between absences and same-day pollution. This pattern sug-

gests that prior-day exposure may influence attendance decisions, which is more consistent

with a health-based mechanism than with riders strategically avoiding excessive exposure to

air pollution. By contrast, if absences were driven exclusively by avoidance behavior, they

should respond primarily to same-day pollution, since prior-day pollution exposure cannot

be avoided.16 This is not entirely surprising given that our identification relies on short-
16Estimates for other lags and leads are not statistically significant, with the exception of a small

positive association between delivery speed in t and air quality in t+1, likely due to collinearity
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term fluctuations in atmospheric conditions, which are largely unobservable to workers and

therefore unlikely to be anticipated. Overall, the dynamic profile of the estimated effects,

together with the nature of the identifying variation, suggests that the observed increase in

absenteeism is more likely a direct consequence of health deterioration among workers rather

than a conscious attempt by riders to avoid excessive exposure to air pollution.

Unlike previous studies that have found temporal reallocation of labor in response to

pollution (Hoffmann and Rud, 2024), we do not detect evidence of compensatory behavior,

such as reduced absenteeism, in the days following high pollution exposure. This different

result may be due to the fact that riders, whose shifts are scheduled in advance, enjoy less

flexibility in adjusting their work hours than self-employed workers.

Finally, when we examine accident rates, we observe a positive and statistically significant

association between accidents in t and pollution in t−1. This may suggest some delayed

effects of pollution on safety and support the health-based channel behind the effect of

pollution on absences.

Although the limited statistical precision and the high degree of collinearity between

pollution concentrations in consecutive days suggest that caution should be taken when

interpreting these results, these estimates point toward a contemporaneous and short-lived

effect of PM on all outcomes, with outcomes responding to same-day or, at most, previous-

day exposure.

across adjacent pollution measures.
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Figure 4: Dynamic Effects
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This figure shows the dynamic effects of air pollution on absenteeism, delivery speed, and accidents, using 2SLS estimates
from our preferred specification. It plots the estimated coefficients for the association between outcomes measured on day t
and PM2.5 levels from day t−2 to t+1. For delivery speed, the analysis is restricted to (e-)bike riders. Dots represent point
estimates; lines indicate 90% confidence intervals.
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8 Concluding Remarks

This paper investigates the impact of air pollution on the health, safety, and productivity

of food delivery riders. We leverage unique high-granularity data from Just Eat, which

cover over 7 million deliveries across 24 Italian cities between June 2021 and June 2023.

Using an instrumental variable strategy based on the IBLH, we identify the causal effects of

fluctuations in PM2.5 on absenteeism, delivery speed, and accident rates.

We find that a one-standard-deviation increase in PM2.5 (10.7 µg/m3) leads to a 1.21

percentage point increase in rider absences, or 6.6% relative to the mean. Among (e-)bike

riders, pollution reduces delivery speed by 0.7% and increases the likelihood of accidents by

4.3 per 10,000 shifts. No significant effects are detected for scooter riders. Taken together,

these results highlight the role of physical effort in shaping the adverse effects of pollution

on outdoor workers in urban environments.

As previously discussed, this is the first study to jointly assess the impact of air pollution

on both workers’ absenteeism and their productivity, enabling a direct comparison of the

relative importance of these two channels in shaping the overall effect of pollution on total

output. According to our estimates, a 1-SD increase in air pollution reduces the effective

workforce by 1.4% and lowers productivity by 0.4%.17 In the absence of any compensatory

behavior on the intensive margin, this would lead to a total output loss of 1.8%, with

absenteeism accounting for 78% of this reduction.18

Our study is also the first to investigate the behavioral response of workers on the inten-

sive margin. Our results indicate that workers offset declines in individual productivity by

increasing their working time, such that the net reduction in output – measured by the total

number of completed deliveries – amounts to 1.3%, perfectly aligning with the contraction

in workforce size. This suggests that, in our setting, the impact of air pollution on produc-
17Assuming no effect for the 33% of riders using motor scooters.
18For (e-)bike riders, our estimates suggest that a 1-SD increase in pollution leads to a 1.5%

reduction in the workforce, a 0.7% reduction in productivity, and a 2.2% reduction in production,
with increased absences responsible for 68% of this decrease.
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tivity operates almost entirely through absenteeism, while the direct productivity effect is

relatively minor and, in a setting where a substantial share of workers’ pay is output-related,

fully offset by workers’ compensating behavior. This behavioral pattern is consistent with

workers having a daily target in terms of number of deliveries, and adjusting their work time

on the margin to reach it when air pollution negatively affects their speed. Although the spe-

cific characteristics of our study population warrant caution in generalizing these estimates

to other occupations or labor markets, our findings offer broader insight into the relative

contributions of absenteeism and productivity losses to the economic cost of pollution.

Our results indicate that pollution causes a deterioration in workers’ well-being through

multiple channels. First, given the importance of the variable pay, increased absenteeism

leads to a significant income loss – a loss that, in this context, is not offset on subsequent

days. Second, income loss is only the visible part of the broader costs of air pollution in

terms of workers’ well-being. In fact, absenteeism is at least partly driven by deteriorating

health, which is a cost per se. Furthermore, some groups (e.g., foreign workers) may be less

able to take time off because of tighter financial constraints and suffer adverse health effects

from exposure to pollution, even if this does not immediately impact their absences and their

income. Moreover, when workers compensate for lost productivity by working longer hours,

this requires increased effort and comes at the expense of reduced leisure time. Finally, air

pollution exposure undermines well-being by increasing the likelihood of workplace accidents.

Our analysis also provides valuable insights into how monetary incentives can mitigate

the adverse effects of pollution. While financial bonuses effectively reduce the effect of air

pollution on absenteeism, they fail to offset the productivity slowdown caused by pollution

for (e-)bike riders. These findings suggest that, while incentives can mitigate the effect of air

pollution on absences, they are less effective at counteracting the physical strain and fatigue

induced by prolonged exposure to poor air quality. Moreover, economic incentives have

unintended negative consequences on the risk of accidents, when applied on high-pollution

days. This suggests that economic incentives may incentivize riders to work even when
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their physical and cognitive conditions are impaired by poor air quality, increasing their

vulnerability to the adverse effects of pollution.

These findings have important policy implications. First, they emphasize the need to

strengthen protective measures for workers who face constant exposure to environmental

hazards, and vehicle emissions in particular. Stricter emission standards and the promo-

tion of cleaner transportation options could significantly enhance the working conditions

of delivery riders and other vulnerable labor groups. Employers and policy-makers could

also consider providing safety equipment, such as air filtration masks, and implementing

more frequent rest breaks to help mitigate the adverse health and performance impacts of

pollution.

Second, our results show that financial incentives can be limited and even risky when

pollution is high. This calls for long-term policies to improve urban air quality through

stricter emission controls.

Finally, the heterogeneous effects observed across vehicle types point to the importance

of tailoring policy interventions to the specific working conditions and physical demands of

different groups of workers. (E-)bike riders, who exert greater physical effort, appear more

vulnerable to pollution effects and may require targeted support measures. By accounting

for these differences, policy-makers can design more effective strategies to safeguard worker

health and maintain productivity.

While our findings offer novel insights into the multiple ways in which air pollution affects

workers’ productivity and well-being, some limitations are worth noting. First, although our

empirical strategy is well-suited for capturing the effects of short-term fluctuations in air

quality, it does not allow us to assess the consequences of long-term exposure.

Second, as with most observational studies, we lack data on individual exposure levels

and on possible defensive behaviors. Our estimates therefore reflect the effects of changes

in average air quality across areas, not the biological impacts of personal exposure or the

effectiveness of mitigation strategies such as wearing masks. While this limits our ability to
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assess health mechanisms directly, it also makes our results particularly relevant for policy,

which typically targets ambient air quality rather than individual exposure.

Finally, the prevalence of young male workers in our sample restricts the scope for het-

erogeneous effects analysis to the comparison of riders using different vehicles and between

native and foreign-born individuals, partially limiting the general validity of our findings

for more heterogeneous workers’ populations in terms of gender and age. Further research

should aim to address these limitations.
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A Appendix Figures

Figure A.1: Geographical distribution of cities in the sample

The figure displays the geographical distribution of cities in Italy where Just Eat operated during the analysis period. Each
point represents a city included in our dataset.
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Figure A.2: Average PM 2.5 by City
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The figure shows the distribution of average daily P M2.5 concentrations across the 24 cities in the sample. Each bar represents
the mean pollution level for a given city over the study period.

Figure A.3: IBLH and PM2.5: First-Stage Estimates by City
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The figure displays estimated coefficients and the associated 90% confidence intervals from a pooled regression of PM2.5
concentration on the interaction between municipality-level fixed-effects and the inverse planetary boundary layer height (IBLH).
The regression includes city and time fixed effects (monthly date and day-of-week) as well as weather controls: daily average
temperature (20 bins), wind speed, and precipitation (mm).
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Figure A.4: First Stage: Residuals Plot
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The figure shows the relationship between the inverse planetary boundary layer height (IBLH) binned at its integer values
and the average values of the residual PM2.5 concentrations computed using our most saturated specification. The gray area
represents the number of observations in the corresponding bin.

A.3



Figure A.5: Different model specifications: Share Absent
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This figure reports the estimated effect of air pollution on riders’ absences across increasingly saturated specifications. Main
IV corresponds to our preferred 2SLS specification. D.O.W. by Mun. adds interactions between day-of-week and municipality
fixed effects, while D.O.W. and L.T. by Mun. further includes municipality-specific linear time trends. IBLH (10 bins) replaces
the continuous instrument with a binned version based on the deciles of the IBLH distribution. IBLH by Mun. interacts the
continuous IBLH instrument with municipality fixed effects. Dots represent point estimates; lines indicate 90% confidence
intervals.
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Figure A.6: Different model specifications: Delivery Speed
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This figure reports the estimated effect of air pollution on riders’ speed across increasingly saturated specifications. Main IV
corresponds to our preferred 2SLS specification. D.O.W. by Mun. adds interactions between day-of-week and municipality
fixed effects, while D.O.W. and L.T. by Mun. further includes municipality-specific linear time trends. IBLH (10 bins) replaces
the continuous instrument with a binned version based on the deciles of the IBLH distribution. IBLH by Mun. interacts the
continuous IBLH instrument with municipality fixed effects. Dots represent point estimates; lines indicate 90% confidence
intervals.
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Figure A.7: Different model specifications: Accident Rate
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This figure reports the estimated effect of air pollution on riders’ accidents across increasingly saturated specifications. Main
IV corresponds to our preferred 2SLS specification. D.O.W. by Mun. adds interactions between day-of-week and municipality
fixed effects, while D.O.W. and L.T. by Mun. further includes municipality-specific linear time trends. IBLH (10 bins) replaces
the continuous instrument with a binned version based on the deciles of the IBLH distribution. IBLH by Mun. interacts the
continuous IBLH instrument with municipality fixed effects. Dots represent point estimates; lines indicate 90% confidence
intervals.
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Figure A.8: Leave-One-Out Analysis: Share Absent
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This figure presents a leave-one-out sensitivity analysis of the estimated effect of air pollution on rider absences. We iteratively
re-estimate our preferred 2SLS specification (Column (5), Table 4) excluding one municipality at a time. Each dot represents
the estimated coefficient when one city is omitted, with the corresponding city indicated on the horizontal axis. Vertical lines
denote 90% confidence intervals. The dashed line marks the baseline estimate from the full sample.
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Figure A.9: Leave-One-Out Analysis: Delivery Speed
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This figure presents a leave-one-out sensitivity analysis of the estimated effect of air pollution on rider speed. We iteratively re-
estimate our preferred 2SLS specification (Column (5), Table 6) excluding one municipality at a time. The analysis is restricted
to riders using (e-)bikes. Each dot represents the estimated coefficient when one city is omitted, with the corresponding city
indicated on the horizontal axis. Vertical lines denote 90% confidence intervals. The dashed line marks the baseline estimate
from the full sample.
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Figure A.10: Leave-One-Out Analysis: Accident Rate
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This figure presents a leave-one-out sensitivity analysis of the estimated effect of air pollution on accidents. We iteratively re-
estimate our preferred 2SLS specification (Column (5), Table 7) excluding one municipality at a time. The analysis is restricted
to riders using (e-)bikes. Each dot represents the estimated coefficient when one city is omitted, with the corresponding city
indicated on the horizontal axis. Vertical lines denote 90% confidence intervals. The dashed line marks the baseline estimate
from the full sample.
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B Appendix Tables

Table A.1: Replication of main results on individual data

All (E-)Bike Motor
(1) (2) (3)

Panel A: Absent (0/1)

PM25 (SD) 0.0122*** 0.0133** 0.0099***
(0.0040) (0.0048) (0.0031)

Rain (mm) 0.0014*** 0.0015*** 0.0011***
(0.0002) (0.0003) (0.0002)

bonus -0.0110*** -0.0156*** -0.0037
(0.0030) (0.0043) (0.0040)

Observations 1,665,727 1,085,280 580,447
Panel B: Speed (ln)

PM25 (SD) -0.0051 -0.0069* -0.0003
(0.0037) (0.0035) (0.0052)

Rain (mm) -0.0019*** -0.0018*** -0.0021***
(0.0001) (0.0001) (0.0001)

bonus 0.0689*** 0.0633*** 0.0819***
(0.0156) (0.0171) (0.0128)

Observations 6,738,898 4,571,487 2,167,411
Panel C: Accidents

PM25 (SD) 0.0418* 0.0512** 0.0168
(0.0208) (0.0244) (0.0289)

Rain (mm) 0.0103*** 0.0076*** 0.0142***
(0.0017) (0.0025) (0.0020)

bonus -0.1048** -0.1445*** -0.0464
(0.0408) (0.0506) (0.0341)

Observations 884,629 558,712 325,917
Notes. This table reports the 2SLS estimated of the effect of air pollution
on rider absences, on delivery speed, and on accidents, using individual-
level data instead of municipality-day aggregate measures. In Panel A, the
unit of observation is a rider-shift, the dependent variable takes value 1 if
the rider was absent for that shift. In Panel B, the unit of observation is a
rider-order, the dependent variable is the natural logarithm of the delivery
speed for in that order. In panel C, the unit of observation is a rider-shift,
the dependent is the number of accidents reported by the rider for that shift.
PM25 is instrumented with IBLH. All regressions include fixed effects for
rider-by-vehicle, municipality-by-vehicle, monthly date-by-vehicle, and day-
of-week, and weather controls for daily average temperature (20 bins), wind
speed, and precipitation (mm). Bonus is a dummy equal to one on days
when monetary incentives were in place in a given city. Standard errors are
clustered at the city level. Significance levels: *** p < 0.01, ** p < 0.05, *
p < 0.1.
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Table A.2: Effect of Air Pollution on Riders’ Outcomes - Wild Bootstrap

Share Absent Delivery Speed (ln) Accident Rate

All (E-)Bike Scooter All (E-)Bike Scooter All (E-)Bike Scooter
(1) (2) (3) (4) (5) (6) (7) (8) (9)

PM25 (SD) 0.0121*** 0.0130** 0.0103*** -0.0051 -0.0072** 0.0004 0.0361** 0.0430** 0.0153
(0.0040) (0.0048) (0.0030) (0.0032) (0.0031) (0.0047) (0.0170) (0.0202) (0.0270)

N cells 32145 16071 16074 34574 17328 17246 25419 12708 12711
N observations 1665743 1085292 580451 6905933 4687984 2217949 865076 544481 320595
Mean dep. .18 .19 .17 11.69 9.85 15.56 .27 .29 .24
Conventional pvalue .006 .013 .003 .124 .028 .933 .045 .045 .575
Bootstrap pvalue .001 .002 .003 .212 .072 .923 .099 .137 .58

Notes. This table reports 2SLS estimates of the effect of air pollution on absenteeism, delivery speed, and accident rate, instrumenting PM2.5 with the IBLH. For each
coefficient, we report both the conventional p-value and the p-value from a wild bootstrap procedure clustered at the municipality level. All regressions focus on the
residualized version of the dependent variable, constructed by subtracting each riders individual-specific average, and include fixed effects for city-by-vehicle, monthly
date-by-vehicle, and day-of-week, weather controls (average temperature in 20 bins, wind speed, and precipitation), and a dummy for monetary incentives. N cells refers
to the number of day-city-level cells, while N observations reflects the number of individual observations.

C Appendix: Effect on Demand

While our main analysis documents a robust causal effect of air pollution on delivery out-

comes using an instrumental variable (IV) strategy, an important remaining concern is

whether pollution also affects customer demand. If pollution leads to a change in food

delivery demand, for instance by inducing more people to stay at home, this could indirectly

influence our outcomes of interest–particularly delivery volume and speed.

The primary order variable used in our analysis captures only completed (fulfilled) orders

and does not reflect latent or unmet demand. To more accurately measure underlying

demand, we leverage an alternative indicator provided by Just Eat: potential orders. This

variable aggregates all fulfilled orders, canceled orders (whether by customers or restaurants),

and orders lost because of temporary service closures. These closures occur either through

autoclosing, triggered when demand exceeds available courier capacity, or manual closing,

implemented during adverse weather conditions for safety reasons.

Table A.3 presents the results. Once we control for weather conditions and the presence of

monetary incentives, we find no meaningful relationship between PM2.5 and potential orders.

The estimated coefficients are very small in relative terms and statistically insignificant,

suggesting that air pollution has no discernible effect on customer demand.
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These findings reinforce our main interpretation: the observed effects of air pollution on

rider absences, delivery speed, and accidents are not mediated by changes in demand but

reflect direct effects on workers’ health, productivity, and safety.

Additionally, the results help address concerns regarding the potential endogeneity of

monetary incentives. Specifically, if bonuses were introduced to increase worker productivity

during periods of unusually high demand, this would complicate the interpretation of their

estimated effects and their interaction with air pollution (Section 7.1). The results in Ta-

ble A.3 alleviate this concern by indicating that controlling for time and day of the week is

sufficient to ensure that, in our preferred specification, they can be considered exogenous to

the level of demand for food delivery.

Table A.3: Effect of Air Pollution on Potential Orders

Potential Orders

2SLS 2SLS 2SLS
(1) (2) (3)

PM25 (SD) -7.1647* -5.8341* -6.0811
(3.7423) (3.3780) (3.6310)

Rain -0.3054 -0.3249
(0.3598) (0.3599)

Bonus 8.3387
(11.3399)

Mun FE Y Y Y
Time FE Y Y Y
Weather - Y Y
Mean dep. 246.07 246.07 246.07
First-stage F 332.51 267.15 265.07

Notes. This table reports the effect of air pollution on potential
orders. 2SLS estimates using the Inverse Planetary Boundary Layer
Height (IBLH) as an instrument for air pollution. All regressions
include city and time fixed effects (monthly date and day-of-week).
Weather controls: average temperature (20 bins), wind speed, and
precipitation (mm). Bonus is a dummy equal to one on days when
monetary incentives were in place in a given city. Standard errors
are clustered at the city level. Significance levels: *** p < 0.01, **
p < 0.05, * p < 0.1.

A.12


	Introduction
	Context
	Food Delivery
	Air Quality in Italy

	Data
	Just Eat Data and Outcomes of Interest
	Air Pollution and Weather Data

	Empirical Strategy
	Estimating Equation
	Instrumental Variable Approach: Inverse Planetary Boundary Layer Height (IBLH)

	Main Results
	Absences
	Productivity: delivery speed
	Accidents

	Robustness Tests
	Additional results
	Interaction between Pollution and Economic Incentives
	Workers' Compensation on the Intensive Margin
	Dynamic Effect

	Concluding Remarks
	Appendix Figures
	Appendix Tables
	Appendix: Effect on Demand


