Web of Science: 33 cites, Scopus: 27 cites, Google Scholar: cites
The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions
Nazarov, Fedor (Kent State University. Department of Mathematical Sciences)
Tolsa Domènech, Xavier (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Volberg, Alexander (Michigan State University. Department of Mathematics)

Data: 2014
Resum: We show that, given a set E Rn+1 with finite n-Hausdorff measure Hn, if the n-dimensional Riesz transform is bounded in L2(HnbE), then E is n-rectifiable. From this result we deduce that a compact set E Rn+1 with Hn(E) < 1 is removable for Lipschitz harmonic functions if and only if it is purely n-unrectifiable, thus proving the analog of Vitushkin's conjecture in higher dimensions.
Drets: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Riesz transform ; Rectifiability ; Lipschitz harmonic functions
Publicat a: Publicacions matemàtiques, Vol. 58, Núm. 2 (2014) , p. 517-532, ISSN 2014-4350

Adreça alternativa: https://raco.cat/index.php/PublicacionsMatematiques/article/view/287189
DOI: 10.5565/PUBLMAT_58214_26


16 p, 405.7 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2014-07-10, darrera modificació el 2024-11-24



   Favorit i Compartir