Web of Science: 11 citations, Scopus: 11 citations, Google Scholar: citations,
On the number of limit cycles for perturbed pendulum equations
Gasull i Embid, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Geyer, Anna (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Mañosas Capellades, Francesc (Universitat Autònoma de Barcelona. Departament de Matemàtiques)

Date: 2016
Abstract: We consider perturbed pendulum-like equations on the cylinder of the form x (x)= _=0^mQ_n, (x) x^ where Q_n, are trigonometric polynomials of degree n, and study the number of limit cycles that bifurcate from the periodic orbits of the unperturbed case =0 in terms of m and n. Our first result gives upper bounds on the number of zeros of its associated first order Melnikov function, in both the oscillatory and the rotary regions. These upper bounds are obtained expressing the corresponding Abelian integrals in terms of polynomials and the complete elliptic functions of first and second kind. Some further results give sharp bounds on the number of zeros of these integrals by identifying subfamilies which are shown to be Chebyshev systems.
Note: Agraïments: The second author is supported by the project J3452 "Dynamical Systems Methods in Hydrodynamics" of the Austrian Science Fund (FWF).
Note: Número d'acord de subvenció MINECO/MTM2013-40998-P
Note: Número d'acord de subvenció MINECO/MTM2014-52209-C2-1-P
Note: Número d'acord de subvenció AGAUR/2014/SGR-568
Rights: Tots els drets reservats.
Language: Anglès
Document: article ; recerca ; acceptedVersion
Subject: Abelian integrals ; Infinitesimal Sixteenth Hilbert problem ; Limit cycles ; Perturbed pendulum equation
Published in: Journal of differential equations, Vol. 261 Núm. 3 (2016) , p. 2141-2167, ISSN 1090-2732

DOI: 10.1016/j.jde.2016.04.025


Postprint
28 p, 402.2 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (scientific output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles

 Record created 2017-01-23, last modified 2020-11-15



   Favorit i Compartir