Probabilitat [104386]
Delgado de la Torre, Rosario
Universitat Autònoma de Barcelona. Facultat de Ciències

Data: 2018-19
Resum: Què tenen en comú un sorteig de la loteria, un assaig clínic per avaluar experimentalment l'eficàcia i/o seguretat d'un nou tractament mèdic, la previsió meteorològica de pluja a determinat indret, la gestió de l'inventari d'una empresa, la transmissió de gens de pares a fills, l'estimació de la mida de la població de balenes, un estudi epidemiològic sobre la incidència de certa malaltia, la inspecció dels lots de productes que fabrica una empresa per a verificar la seva qualitat, un experiment per a estudiar l'efecte de pressió i temperatura en el resultat de certa reacció química, o l'efecte de l'ús de diferents adobs en la producció agrícola d'una explotació,. . . ? Són situacions reals en les quals intervé l'atzar. Per a estudiar-les i poder extraure'n conclusions fiables, hem de fer servir un model matemàtic adient. Aquest model ens el proporciona la Probabilitat, que és la teoria matemàtica que permet modelitzar fenòmens aleatoris, és a dir, situacions on intervé l'atzar. L'objectiu d'aquesta assignatura és el d'introduir la teoria de la Probabilitat com a teoria matemàtica que estudia els models que permeten tractar amb l'atzar. Els temes que s'introduiran i es desenvoluparan en aquesta assignatura inclouen continguts bàsics de la teoria de la Probabilitat (desenvolupament del model matemàtic per a fenòmens aleatoris), encara que sense utilitzar elements avançats de la Teoria de la Mesura que corresponen a un nivell més profund de l'estudi de la matèria. Però l'èmfasi es posarà en les aplicacions, quan s'ha de intentar trobar el millor model probabilístic possible en una determinada situació real i, fent-lo servir de manera adient, amb les eines que aprendrem al llarg de l'assignatura, extreure informació valuosa, coneixement, i arribar a conclusions útils, doncs és aquest l'objectiu que es preten quan es fa modelització. CASTELLANO: ¿Qué tienen en común un sorteo de la lotería, un ensayo clínico para evaluar experimentalmente la eficacia y/o seguridad de un nuevo tratamiento médico, la previsión meteorológica de lluvia en determinado lugar, la gestión del inventario de una empresa, la transmisión de genes de padres a hijos, la estimación del tamaño de 1 gestión del inventario de una empresa, la transmisión de genes de padres a hijos, la estimación del tamaño de la población de ballenas, un estudio epidemiológico sobre la incidencia de cierta enfermedad, la inspección de los lotes de productos que fabrica una empresa para verificar su calidad, un experimento para estudiar el efecto de presión y temperatura en el resultado de cierta reacción química, o el efecto del uso de diferentes abonos en la producción agrícola de una explotación, . . . ? Son situaciones reales en las que interviene el azar. Para estudiarlas y poder extraer conclusiones fiables, tenemos que utilizar un modelo matemático adecuado. Este modelo nos lo proporciona la Probabilidad, que es la teoría matemática que permite modelizar fenómenos aleatorios, es decir, situaciones donde interviene el azar. El objetivo de esta asignatura es el de introducir la teoría de la probabilidad como teoría matemática que estudia los modelos que permiten tratar con el azar. Los temas que se introducirán y se desarrollarán en esta asignatura incluyen contenidos básicos de la teoría de la Probabilidad (desarrollo del modelo matemático para fenómenos aleatorios), aunque sin utilizar elementos avanzados de la Teoría de la Medida que corresponden a un nivel más profundo del estudio de la materia. Pero el énfasis se pondrá en las aplicaciones, cuando se ha de intentar encontrar el mejor modelo probabilístico posible en una determinada situación real y, usándolo de manera adecuada, con las herramientas que aprenderemos a lo largo de la asignatura, extraer información valiosa, conocimiento, y llegar a conclusiones útiles, pues es éste el objetivo que se pretende cuando se hace modelización. ENGLISH: What has in common a draw of the lottery, a clinical trial to experimentally evaluate the efficacy and/or safety of a new medical treatment, the weather forecast of rain in a specific area, the management of the inventory of a company, the transmission of genes from parents to children, the estimate of the size of the whale population, an epidemiological study on the incidence of a certain disease, the inspection of batches of products that a company manufactures to verify their quality, an experiment to study the effect of pressure and temperature on the result of a certain chemical reaction, or the effect of the use of different fertilizers in the agricultural production of a farm, . . . ? These are real situations in which chance intervenes. To study them and to be able to extract reliable conclusions, we must use a suitable mathematical model. This model is provided by the Probability, which is the mathematical theory that allows modeling random phenomena, that is, situations where chance acts. The objective of this subject is to introduce the theory of Probability as a mathematical theory that studies the models that allow to deal with randomness. The topics that will be introduced and will be developed in this subject include basic contents of the theory of Probability (development of the mathematical model for random phenomena), although without using advanced elements of the Measure Theory that correspond to a deeper study of matter. But the emphasis will be on applications, when trying to find the best possible probabilistic model in a given real situation and, by using it appropriately, with the tools we will learn throughout the course, to extract valuable information, knowledge, and reach useful conclusions, because this is the objective that is sought when modeling is done.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Català
Titulació: Matemàtica Computacional i Analítica de Dades [2503740]
Pla d'estudis: Grau en Matemàtica Computacional i Analítica de Dades [1403]



Català
6 p, 83.5 KB

El registre apareix a les col·leccions:
Materials acadèmics > Guies docents

 Registre creat el 2018-07-06, darrera modificació el 2021-06-19



   Favorit i Compartir