Google Scholar: cites
Global photosynthetic capacity is optimized to the environment
Smith, Nicholas G. (Texas Tech University. Department of Biological Sciences, Texas Tech University)
Keenan, Trevor F. (Lawrence Berkeley National Laboratory. Climate and Ecosystem Sciences Division)
Prentice, Iain Colin (Imperial College London. Department of Life Sciences)
Wang, Han (Tsinghua University. Department of Earth System Science)
Wright, Ian J. (Macquarie University. Department of Biological Sciences)
Niinemets, Ülo (Estonian University of Life Science. Department of Plant Physiology)
Crous, Kristine Y. (Western Sydney University. Hawkesbury Institute for the Environment)
Domingues, Tomas F. (University of São Paulo. Departamento de Biologia)
Guerrieri, Rossella (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Ishida, F. Yoko (James Cook University. Centre for Tropical Environmental and Sustainability Science)
Kattge, Jens (Max Planck Institute for Biogeochemistry)
Kruger, Eric L. (University of Wisconsin. Department of Forest and Wildlife Ecology)
Maire, Vincent (Université du Québec à Trois. Département des sciences de l'environnement)
Rogers, Alistair (Brookhaven National Laboratory)
Serbin, Shawn P. (Brookhaven National Laboratory. Environmental and Climate Sciences Department)
Tarvainen, Lasse (University of Gothenburg. Department of Biological and Environmental Sciences)
Togashi, Henrique F. (Macquarie University. Department of Biological Sciences)
Townsend, Philip A. (University of Wisconsin. Department of Forest and Wildlife Ecology)
Wang, Meng (Northwest A&F University (Yangling, Xina). College of Forestry)
Weerasinghe, Lasantha K. (The Australian National University. Research School of Biology)
Zhou, Shuang-Xi (Macquarie University. Department of Biological Sciences)

Data: 2019
Resum: Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (Vcmax), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co-optimization of carboxylation and water costs for photosynthesis, suggests that optimal Vcmax can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field-measured Vcmax dataset for C3 plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first-order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Carbon cycle ; Carboxylation ; Coordination ; Ecophysiology ; Electron transport ; Jmax ; Light availability ; Nitrogen availability ; Temperature ; Vcmax
Publicat a: Ecology letters, Vol. 22, issue 3 (March 2019) , p. 506-517, ISSN 1461-0248

DOI: 10.1111/ele.13210
PMID: 30609108


12 p, 1.1 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2020-01-21, darrera modificació el 2023-01-26



   Favorit i Compartir