Constraint aggregation principle in convex optimization
Ermoliev, Yuri M.
Kryazhimskii, Arkadii V.
Ruszczynski, Andrzej

Date: 1997
Abstract: A general constraint aggregation technique is proposed for convex optimization problems. At each iteration a set of convex inequalities and linear equations is replaced by a single surrogate inequality formed as a linear combination of the original constraints. After solving the simplified subproblem, new aggregation coefficients are calculated and the iteration continues. This general aggregation principle is incorporated into a number of specific algorithms. Convergence of the new methods is proved and speed of convergence analyzed. Next, dual interpretation of the method is provided and application to decomposable problems is discussed. Finally, a numerical illustration is given. .
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Nonsmooth optimization ; Surrogate constraints ; Subgradient methods ; Decomposition
Published in: Mathematical Programming, vol. 76 n. 3 (1997) p. 353-372, ISSN 0025-5610



20 p, 827.4 KB
 UAB restricted access

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2006-03-13, last modified 2024-12-07



   Favorit i Compartir