Dipòsit Digital de Documents de la UAB
https://ddd.uab.cat
Dipòsit Digital de Documents de la UAB latest documentscaWed, 24 Apr 2019 04:32:59 GMTInvenio 1.1.6ddd.bib@uab.cat3606125https://ddd.uab.cat/img/uab/ddd_logo.gifDipòsit Digital de Documents de la UAB
https://ddd.uab.cat
Search Search this site:p
https://ddd.uab.cat/search
Geometric configurations of singularities for quadratic differential systems with three distinct real simple finite singularities
https://ddd.uab.cat/record/169420
In this work we classify, with respect to the geometric equivalence relation, the global configurations of singularities, finite and infinite, of quadratic differential systems possessing exactly three distinct finite simple singularities. This relation is finer than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci (or saddles) of different orders. Such distinctions are, however, important in the production of limit cycles close to the foci (or loops) in perturbations of the systems. The notion of geometric equivalence relation of configurations of singularities allows us to incorporate all these important geometric features which can be expressed in purely algebraic terms. The geomet ric classification of all configurations of singularities, finite and infinite, of quadratic systems was initiated in a work published in 2013 when the classification was done for systems with total multiplicity m f of finite singularities less than or equal to one. That work was continued in an article which is due to appear in 2014 where the geometric classification of configurations of singularities was done for the case m f = 2. In this article we go one step further and obtain the geometric classification of singularities, finite and infinite, for the subclass mentioned above. We obtain 147 geometrically distinct configurations of singularities for this family. We give here the global bifurcation diagram of configurations of singularities, both finite and infinite, with respect to the geometric equivalence relation, for this class of systems. The bifurcation set of this diagram is algebraic. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants, a fact which gives us an algorithm for determining the geometric configuration of singularities for any quadratic system in this particular class. Artés, Joan CarlesMon, 23 Jan 2017 15:21:44 GMThttps://ddd.uab.cat/record/1694202013Geometric configurations of singularities for quadratic differential systems with total finite multiplicity m_f=2
https://ddd.uab.cat/record/150698
In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [3]. This relation is finer than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci of different orders. Such distinctions are however important in the production of limit cycles close to the foci in perturbations of the systems. The notion of geometric equivalence relation of configurations of singularities allows to incorporates all these important geometric features which can be expressed in purely algebraic terms. This equivalence relation is also finer than the qualitative equivalence relation introduced in [17]. The geometric classification of all configurations of singularities, finite and infinite, of quadratic systems was initiated in [4] where the classification was done for systems with total multiplicity mf of finite singularities less than or equal to one. In this article we continue the work initiated in [4] and obtain the geometric classification of singularities, finite and infinite, for the subclass of quadratic differential systems possessing finite singularities of total multiplicity mf = 2. We obtain 197 geometrically distinct configurations of singularities for this family. We also give here the global bifurcation diagram of configurations of singularities, both finite and infinite, with respect to the geometric equivalence relation, for this class of systems. The bifurcation set of this diagram is algebraic. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants. The results can therefore be applied for any family of quadratic systems in this class, given in any normal form. Determining the geometric configurations of singularities for any such family, becomes thus a simple task using computer algebra calculations. Artés, Joan CarlesFri, 06 May 2016 08:59:50 GMThttps://ddd.uab.cat/record/1506982014Global configurations of singularities for quadratic differential systems with total finite multiplicity three and at most two real singularities
https://ddd.uab.cat/record/150677
In this work we consider the problem of classifying all configurations of singularities, finite and infinite, of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. This relation is deeper than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci (or saddles) of different orders. Such distinctions are however important in the production of limit cycles close to the foci (or loops) in perturbations of the systems. The notion of geometric equivalence relation of configurations of singularities allows us to incorporate all these important geometric features which can be expressed in purely algebraic terms. This equivalence relation is also deeper than the qualitative equivalence relation introduced in [19]. The geometric classification of all configurations of singularities, finite and infinite, of quadratic systems was initiated in [3] where the classification was done for systems with total multiplicity mf of finite singularities less than or equal to one. That work was continued in [4] where the geometric classification was done for the case mf = 2. The case mf = 3 has been split in two separate papers because of its length. The subclass of three real distinct singular points was done in [5] and we complete this case here. In this article we obtain geometric classification of singularities, finite and infinite, for the remaining three subclasses of quadratic differential systems with mf = 3 namely: (i) systems with a triple singularity (19 configurations); (ii) systems with one double and one simple real singularities (62 configurations) and (iii) systems with one real and two complex singularities (74 configurations). We also give here the global bifurcation diagrams of configurations of singularities, both finite and infinite, with respect to the geometric equivalence relation, for these subclasses of systems. The bifurcation set of this diagram is algebraic. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of invariant polynomials. This provides an algorithm for computing the geometric configuration of singularities for any quadratic system in this class. Artés, Joan CarlesFri, 06 May 2016 08:59:49 GMThttps://ddd.uab.cat/record/1506772014Global configurations of singularities for quadratic differential systems with exactly two finite singularities of total multiplicity four
https://ddd.uab.cat/record/150673
In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. This relation is deeper than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci (or saddles) of different orders. Such distinctions are however important in the production of limit cycles close to the foci in perturbations of the systems. The notion of geometric equivalence relation of configurations of singularities allows to incorporate all these important geometric features which can be expressed in purely algebraic terms. This equivalence relation is also deeper than the qualitative equivalence relation introduced in [20]. The geometric classification of all configurations of singularities, finite and infinite, of quadratic systems was initiated in [3] where the classification was done for systems with total multiplicity mf of finite singularities less than or equal to one. That work was continued in [4] where the geometric classification was done for the case mf = 2 and two more papers [5] and [6], which cover the case mf = 3. In this article we obtain the geometric classification of singularities, finite and infinite, for the three subclasses of quadratic differential systems with mf = 4 possessing exactly two finite singularities, namely: (i) systems with two double complex singularities (18 configurations); (ii) systems with two double real singularities (33 configurations) and (iii) systems with one triple and one simple real singularities (123 configurations). We also give here the global bifurcation diagrams of configurations of singularities, both finite and infinite, with respect to the geometric equivalence relation, for these subclasses of systems. The bifurcation set of this diagram is algebraic. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants, fact which gives an algorithm for determining the geometric configuration of singularities for any quadratic system. Artés, Joan CarlesFri, 06 May 2016 08:59:48 GMThttps://ddd.uab.cat/record/1506732014Geometric configurations of singularities for quadratic differential systems with total finite multiplicity lower than 2
https://ddd.uab.cat/record/150578
In [3] we classified globally the configurations of singularities at infinity of quadratic differential systems, with respect to the geometric equivalence relation. The global classification of configurations of finite singularities was done in [2] modulo the coarser topological equivalence relation for which no distinctions are made between a focus and a node and neither are they made between a strong and a weak focus or between foci of different orders. These distinctions are however important in the production of limit cycles close to the foci in perturbations of the systems. The notion of geometric equivalence relation of configurations of singularities allows us to incorporates all these important purely algebraic features. This equivalence relation is also finer than the qualitative equivalence relation introduced in [19]. In this article we initiate the joint classification of configurations of singularities, finite and infinite, using the finer geometric equivalence relation, for the subclass of quadratic differential systems possessing finite singularities of total multiplicity mf ≤ 1. We obtain 84 geometrically distinct configurations of singularities for this family. We also give here the global bifurcation diagram, with respect to the geometric equivalence relation, of configurations of singularities, both finite and infinite, for this class of systems. This bifurcation set is algebraic. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants. The results can therefore be applied for any family of quadratic systems, given in any normal form. Determining the configurations of singularities for any family of quadratic systems, becomes thus a simple task using computer algebra calculations. Artés, Joan CarlesFri, 06 May 2016 08:54:14 GMThttps://ddd.uab.cat/record/1505782013Global configurations of singularities for quadratic differential systems with exactly three finite singularities of total multiplicity four
https://ddd.uab.cat/record/145286
In this article we obtain the geometric classification of singularities, finite and infinite, for the two subclasses of quadratic differential systems with total finite multiplicity m_f=4 possessing exactly three finite singularities, namely: systems with one double real and two complex simple singularities (31 configurations) and (ii) systems with one double real and two simple real singularities (265 configurations). We also give here the global bifurcation diagrams of configurations of singularities, both finite and infinite, with respect to the geometric equivalence relation, for these classes of quadratic systems. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants. This gives an algorithm for determining the geometric configuration of singularities for any system in anyone of the two subclasses considered. Artés, Joan CarlesTue, 12 Jan 2016 16:38:06 GMThttps://ddd.uab.cat/record/1452862015