Artículos

Artículos Encontrados 39 registros  1 - 10siguientefinal  ir al registro: La búsqueda tardó 0.02 segundos. 
1.
Invariant conditions for phase portraits of quadratic systems with complex conjugate invariant lines meeting at a finite point / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques (France)) ; Vulpe, Nicolae (Vladimir Andrunakievichi Institute of Mathematics and Computer Science (Moldova))
The goal of this article is to give invariant necessary and sufficient conditions for a quadratic system, presented in whatever normal form, to have anyone of 17 out of the 20 phase portraits of the family of quadratic systems with two complex conjugate invariant lines intersecting at a finite real point. [...]
2020 - 10.1007/s12215-020-00541-2
Rendiconti del Circolo Matematico di Palermo, (July 2020)  
2.
Gradient systems of harmonic polynomials / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Ramírez, Oscar (Universidade Federal de Viçosa. Departamento de Matemática (Brazil))
We characterize all local phase-portraits of the finite and infinite singular points of the gradient systems defined by the real harmonic polynomials in two variables. We classify all the non-equivalent topological phase portraits of the gradient systems in the Poincaré disc defined by harmonic polynomials of degree less than five.
2020 - 10.1016/j.jde.2020.06.056
Journal of differential equations, Vol. 269, Issue 11 (November 2020) , p. 10073-10084  
3.
20 p, 1.0 MB Phase portraits of Bernoulli quadratic polynomial differential systems / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pereira, Weber F. (Universidade Estadual Paulista. Departamento de Matemática (Brasil)) ; Pessoa, Claudio (Universidade Estadual Paulista. Departamento de Matemática (Brasil))
In this paper we study a new class of quadratic polynomial differential systems. We classify all global phase portraits in the Poincaré disk of Bernoulli quadratic polynomial differential systems in R2.
2020
Electronic journal of differential equations, Vol. 2020, Issue 48 (2020) , p. 1-19
2 documentos
4.
Z₂-equivariant linear type bi-center cubic polynomial Hamiltonian vector fields / Chen, Ting (Guangdong University of Finance and Economics. School of Statistics and Mathematics (China)) ; Li, Shimin (Guangdong University of Finance and Economics. School of Mathematics and Statistics (China)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We study the global dynamical behavior of Z₂-equivariant cubic Hamiltonian vector fields with a linear type bi-center at (±1,0). By using a series of symbolic computation tools, we obtain all possible phase portraits of these Z₂-equivariant Hamiltonian systems.
2020 - 10.1016/j.jde.2019.12.020
Journal of differential equations, Vol. 269, Issue 1 (June 2020) , p. 832-861  
5.
14 p, 412.2 KB Topological classification of polynomial complex differential equations with all the critical points of centre type / Álvarez Torres, María Jesús (Universitat de les Illes Balears. Departament de Matemàtiques i Informàtica) ; Gasull i Embid, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Prohens, Rafel (Universitat de les Illes Balears. Departament de Matemàtiques i Informàtica)
In this paper we study the global phase portrait of complex polynomial differential equations of degree n of the form z˙ = f(z), having all their critical points of center type. We give the exact number of topologically different phase portraits on the Poincaré disk when n ≤ 6 and, in the remaining cases, an upper bound for this number which only depends on n.
2010 - 10.1080/10236190903232654
Journal of Difference Equations and Applications, Vol. 16, Issue 5-6 (May 2010) , p. 411-423  
6.
37 p, 678.9 KB Z2-symmetric planar polynomial Hamiltonian systems of degree 3 with nilpotent centers / Dias, Fabio Scalco (Universidade Federal de Itajubá. Instituto de Matemática e Computação (Brazil)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Valls, Clàudia 1973- (Universidade de Lisboa. Instituto Superior Técnico. Departamento de Matemàtica)
We provide the normal forms and the global phase portraits in the Poincaré disk of all Z2-symmetric planar polynomial Hamiltonian systems of degree 3 having a nilpotent center at the origin.
2019
Electronic journal of differential equations, Vol. 2019, Issue 82 (2019) , p. 1-29
2 documentos
7.
28 p, 837.2 KB Phase portraits of Abel quadratic differential systems of second kind with symmetries / Ferragut, Antoni (Universitat Jaume I. Institut de Matemàtiques i Aplicacions de Castelló. Departament de Matemàtiques) ; García-Saldaña, Johanna D. (Universidad Católica de la Santísima Concepción. Departamento de Matemática y Física Aplicadas (Chile)) ; Valls, Clàudia 1973- (Universidade de Lisboa. Instituto Superior Técnico. Departamento de Matemática)
We provide normal forms and the global phase portraits on the Poincaré disk of the Abel quadratic differential equations of the second kind having a symmetry with respect to an axis or to the origin. [...]
2019 - 10.1080/14689367.2018.1530732
Dynamical Systems, Vol. 34, Issue 2 (2019) , p. 301-333  
8.
The centers and their cyclicity for a class of polynomial differential systems of degree 7 / Benterki, Rebiha (Université Bachir El Ibrahimi. Département de Mathématiques (Algeria)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We classify the global phase portraits in the Poincaré disc of the generalized Kukles systems ẋ=−y,ẏ=x+axy6+bx3y4+cx5y2+dx7,which are symmetric with respect to both axes of coordinates. Moreover using the averaging theory up to sixth order, we study the cyclicity of the center located at the origin of coordinates, i. [...]
2020 - 10.1016/j.cam.2019.112456
Journal of computational and applied mathematics, Vol. 368 (April 2020) , art. 112456  
9.
17 p, 906.6 KB Phase portraits of Abel quadratic differential systems of the second kind / Ferragut, Antoni (Universitat Jaume I. Institut Universitari de Matemàtiques i Aplicacions de Castelló. Departament de Matemàtiques) ; Valls, Clàudia 1973- (Universidade de Lisboa. Instituto Superior Técnico. Departamento de Matemática)
We provide normal forms and the global phase portraits on the Poincaré disk of some Abel quadratic differential equations of the second kind. Moreover, we also provide the bifurcation diagrams for these global phase portraits.
2018 - 10.1080/14689367.2017.1402296
Dynamical Systems, Vol. 33, Issue 4 (2018) , p. 581-601  
10.
13 p, 380.0 KB Dynamics of some three-dimensional Lotka-Volterra systems / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Zhang, Xiang (Shanghai Jiao Tong University. School of Mathematical Sciences)
We characterize the dynamics of the following two Lotka-Volterra differential systems: ̇x=x(r+ay+bz), ̇x=x(r+ax+by+cz), ̇y=y(r−ax+cz),and ̇y=y(r+ax+dy+ez), ̇z=z(r−bx−cy), ̇z=z(r+ax+dy+fz). [...]
2017 - 10.1007/s00009-017-0927-5
Mediterranean Journal of Mathematics, Vol. 14, Issue 3 (June 2017) , art. 126  

Artículos : Encontrados 39 registros   1 - 10siguientefinal  ir al registro:
¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.