Results overview: Found 8 records in 0.02 seconds.
Articles, 7 records found
Books and collections, 1 records found
Articles 7 records found  
1.
10 p, 419.0 KB A family of stacked central configurations in the planar five-body problem / Cornelio, J. Lino (Universidad Juárez Autónoma de Tabasco. División Académica de Ciencias Básicas (México)) ; Álvarez-Ramírez, Martha (Universidad Autónoma Metropolitana - Unidad Iztapalapa. Departamento de Matemáticas (México)) ; Cors Iglesias, Josep Maria (Universitat Politècnica de Catalunya. Departament de Matemàtiques)
We study planar central configurations of the five-body problem where three bodies, m1,m2 and m3, are collinear and ordered from left to right, while the other two, m4 and m5, are placed symmetrically with respect to the line containing the three collinear bodies. [...]
2017 - 10.1007/s10569-017-9782-8
Celestial Mechanics and Dynamical Astronomy, Vol. 129, Issue 3 (November 2017) , p. 321-328  
2.
Equilic quadrilateral central configurations / Álvarez-Ramírez, Martha (Universidad Autónoma Metropolitana - Unidad Iztapalapa. Departamento de Matemáticas (México)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
An equilic quadrilateral is a quadrilateral with one pair of opposite sides having the same length, which has angles of inclination whose sum is 2π/3. We characterize the central configurations of the 4-body problem whose four positive masses are at the vertices of equilic quadrilaterals.
2019 - 10.1016/j.cnsns.2019.104872
Communications in nonlinear science and numerical simulation, Vol. 78 (November 2019) , art. 104872  
3.
7 p, 360.3 KB A note on a family of non-gravitational central force potentials in dimension one / Álvarez-Ramírez, Martha (Universidad Autónoma Metropolitana - Unidad Iztapalapa. Departamento de Matemáticas (México)) ; Corbera Subirana, Montserrat (Universitat de Vic - Universitat Central de Catalunya. Departament de Tecnologies Digitals i de la Informació) ; Cors Iglesias, Josep Maria (Universitat Politècnica de Catalunya. Departament de Matemàtiques) ; García, A. (Universidad Autónoma Metropolitana - Unidad Iztapalapa. Departamento de Matemáticas (México))
In this work, we study a one-parameter family of differential equations and the different scenarios that arise with the change of parameter. We remark that these are not bifurcations in the usual sense but a wider phenomenon related with changes of continuity or differentiability. [...]
2017 - 10.1016/j.aml.2017.04.020
Applied Mathematics Letters, Vol. 74 (December 2017) , p. 74-78  
4.
10 p, 418.4 KB A special family of stacked central configurations : lagrange plus euler in one / Cornelio, J. Lino (Universidad Juárez Autónoma de Tabasco. División Académica de Ciencias Básicas) ; Álvarez-Ramírez, Martha (Universidad Autónoma Metropolitana - Iztapalapa. Departamento de Matemáticas (México)) ; Cors Iglesias, Josep Maria (Universitat Politècnica de Catalunya. Departament de Matemàtiques)
We show the existence of a family of stacked central configurations in the planar five-body problem with a special property. Three bodies m1 , m2 and m3 , ordered from left to right, are collinear and form an Euler central configuration, and the other two bodies m4 and m5 , together with m2 are at the vertices of an equilateral triangle and form a Lagrange central configuration.
2019 - 10.1007/s10884-018-9647-1
Journal of dynamics and differential equations, Vol. 31, Issue 2 (June 2019) , p. 711-718  
5.
12 p, 443.2 KB Hjelmslev quadrilateral central configurations / Álvarez-Ramírez, Martha (Universidad Autónoma Metropolitana (Iztapalapa, Mèxic). Departamento de Matemáticas) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. Using mutual distances as coordinates, we show that any four-body central configuration forming a Hjelmslev quadrilateral must be a right kite configuration.
2019 - 10.1016/j.physleta.2018.08.034
Physics Letters. A, Vol. 383, Issues 2-3 (January 2019) , p. 103-109  
6.
4 p, 262.6 KB On the Homoclinic Orbits of the Lü System / Álvarez-Ramírez, Martha (Universidad Autónoma Metropolitana (Iztapalapa, Mèxic). Departamento de Matemáticas) ; García Saldaña, Johanna Denise (Universidad Católica de la Santísima Concepción (Xile). Departamento de Matemática y Física Aplicadas)
In this paper, the existence of homoclinic orbits of the equilibrium point (0, 0, 0) is demonstrated in the case of the Lu ̈ system for parameter values not reported by G. A. Leonov. In addition, some simulations are shown that agree with our theoretical analysis.
2017 - 10.1142/S0218127417500705
International journal of bifurcation and chaos in applied sciences and engineering, Vol. 27 Núm. 5 (2017) , p. 1750070  
7.
9 p, 661.1 KB The symmetric central configurations of the 4-body problem with masses m_1=m_2 m_3=m_4 / Álvarez-Ramírez, Martha (UAM-Iztapalapa(México). Departamento de Matemáticas) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We characterize the planar central configurations of the 4-body problem with masses m1 = m2 ̸= m3 = m4 which have an axis of symmetry. It is known that this problem has exactly two classes of convex central configurations, one with the shape of a rhombus and the other with the shape of an isosceles trapezoid. [...]
2013 - 10.1016/j.amc.2012.12.036
Applied Mathematics and Computation, Vol. 219 (2013) , p. 5996-6001  

Books and collections 1 records found  
1.
5 p, 650.0 KB Bifurcations of the spatial central configurations in the 5-body problem / Álvarez-Ramírez, Martha (Universidad Autónoma Metropolitana - Unidad Iztapalapa. Departamento de Matemáticas (México)) ; Corbera Subirana, Montserrat (Universitat de Vic. Departament de Tecnologies Digitals i de la Informació) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
A configuration of n particles is called central when the acceleration vector of each particle is a common scalar multiple of its position vector. One of the reasons why central configurations are interesting is that they allow us to obtain explicit homographic solutions of the n-body problem, that is, motions where the configuration of the system changes size but keeps its shape. [...]
Cham, etc : Birkhäuser, cop. 2015 (Trends in mathematics. Research perspectives CRM Barcelona ; 4) - 10.1007/978-3-319-22129-8_2
Extended Abstracts Spring 2014, part 1- Hamiltonian Systems and Celestial Mechanics,, 2015, p. 9-15  

See also: similar author names
Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.