Resultats globals: 2 registres trobats en 0.02 segons.
Articles, 2 registres trobats
Articles 2 registres trobats  
1.
56 p, 4.4 MB Roadmap on STIRAP applications / Bergmann, Klaas (Technische Universität Kaiserslautern. Fachbereich Physik and Landesforschungszentrum OPTIMAS (Germany)) ; Nägerl, Hanns-Christoph (Universität Innsbruck. Institut für Experimentalphysik und Zentrum für Quantenphysik (Austria)) ; Panda, Cristian (Northwestern University. Center for Fundamental Physics (USA)) ; Gabrielse, Gerald (Northwestern University. Center for Fundamental Physics (USA)) ; Miloglyadov, Eduard (ETH Zürich. Laboratorium für Physikalische Chemie (Switzerland)) ; Quack, Martin (ETH Zürich. Laboratorium für Physikalische Chemie (Switzerland)) ; Seyfang, Georg (ETH Zürich. Laboratorium für Physikalische Chemie (Switzerland)) ; Wichmann, Gunther (ETH Zürich. Laboratorium für Physikalische Chemie (Switzerland)) ; Ospelkaus, Silke (Leibniz Universität Hannover. Institut für Quantenoptik (Germany)) ; Kuhn, Axel (University of Oxford. Clarendon Laboratory (UK)) ; Longhi, Stefano (Politecnico di Milano. Dipartimento di Fisica (Italy)) ; Szameit, Alexander (University of Rostock. Institute for Physics (Germany)) ; Pirro, Philipp (Technische Universität Kaiserslautern. Fachbereich Physik and Landesforschungszentrum OPTIMAS (Germany)) ; Hillebrands, Burkard (Technische Universität Kaiserslautern. Fachbereich Physik and Landesforschungszentrum OPTIMAS (Germany)) ; Zhu, Xue-Feng (Huazhong University of Science and Technology. School of Physics and Wuhan National Laboratory for Optoelectronics (People's Republic of China)) ; Zhu, Jie (Hong Kong Polytechnic University. Department of Mechanical Engineering (People's Republic of China)) ; Drewsen, Michael (Aarhus University. Department of Physics and Astronomy (Denmark)) ; Hensinger, Winfried K. (University of Sussex. Sussex Centre for Quantum Technologies (UK)) ; Weidt, Sebastian (University of Sussex. Sussex Centre for Quantum Technologies (UK)) ; Halfmann, Thomas (Technical University of Darmstadt. Institute of Applied Physics (Germany)) ; Wang, Hai-Lin (University of Oregon. Department of Physics (USA)) ; Paraoanu, Gheorghe Sorin (Aalto University. Department of Applied Physics. QTF Centre of Excellence (Finland)) ; Vitanov, Nikolay V. (St Kliment Ohridski University of Sofia. Faculty of Physics (Bulgaria)) ; Mompart Penina, Jordi (Universitat Autònoma de Barcelona. Departament de Física) ; Busch, Thomas (Okinawa Institute of Science and Technology Graduate University. Quantum Systems Unit (Japan)) ; Barnum, Timothy J. (Massachusetts Institute of Technology. Department of Chemistry (USA)) ; Grimes, David D. (Harvard-MIT Center for Ultracold Atoms (USA)) ; Field, Robert W. (Massachusetts Institute of Technology. Department of Chemistry (USA)) ; Raizen, Mark G. (University of Texas at Austin. Department of Physics. Center for Nonlinear Dynamics (USA)) ; Narevicius, Edvardas (Weizmann Institute of Science (Israel). Department of Chemical Physics) ; Auzinsh, Marcis (University of Latvia. Department of Physics (Latvia)) ; Budker, Dmitry (University of California at Berkeley. Department of Physics (USA)) ; Pálffy, Adriana (Max Planck Institute for Nuclear Physics (Germany)) ; Keitel, Christoph H. (Max Planck Institute for Nuclear Physics (Germany))
STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. [...]
2019 - 10.1088/1361-6455/ab3995
Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 52, Issue 20 (October 2019) , p. 202001  
2.
34 p, 5.3 MB The 2017 Magnetism Roadmap / Sander, D. (Max Planck Institute of Microstructure Physics (Germany)) ; Valenzuela, Sergio O. (Institut Català de Nanociència i Nanotecnologia) ; Makarov, D. (Helmholtz-Zentrum Dresden Rossendorf (Germany)) ; Marrows, C. H. (University of Leeds. School of Physics and Astronomy (United Kingdom)) ; Fullerton, E. E. (University of California. Center for Memory and Recording Research (EUA)) ; Fischer, P. (University of California. Physics Department (EUA)) ; McCord, J. (Kiel University. Institute for Materials Science (Germany)) ; Vavassori, Paolo (IKERBASQUE. Basque Foundation for Science (España)) ; Mangin, S. (Université de Lorraine. Institut Jean Lamour (France)) ; Pirro, Philipp (Technische Universität Kaiserslautern. Fachbereich Physik and Landesforschungszentrum (Germany)) ; Hillebrands, Burkard (Technische Universität Kaiserslautern. Fachbereich Physik and Landesforschungszentrum (Germany)) ; Kent, A. D. (New York University. Department of Physics (EUA)) ; Jungwirth, Tomas (Czech Academy of Sciences. Institute of Physics) ; Gutfleisch, O. (TU Darmstadt. Material Science (Germany)) ; Kim, C. G. (DGIST. Department of Emerging Materials Science (Republic of Korea)) ; Berger, Andreas (CIC NanoGUNE (España))
Building upon the success and relevance of the 2014 Magnetism Roadmap, this 2017 Magnetism Roadmap edition follows a similar general layout, even if its focus is naturally shifted, and a different group of experts and, thus, viewpoints are being collected and presented. [...]
2017 - 10.1088/1361-6463/aa81a1
Journal of Physics D: Applied Physics, Vol. 50, Issue 36 (September 2017) , art. 363001  

Vegeu també: autors amb noms similars
2 Hillebrands, Burkard
Us interessa rebre alertes sobre nous resultats d'aquesta cerca?
Definiu una alerta personal via correu electrònic o subscribiu-vos al canal RSS.