Resultados globales: 3 registros encontrados en 0.02 segundos.
Artículos, Encontrados 3 registros
Artículos Encontrados 3 registros  
1.
16 p, 431.6 KB Rational parameterizations approach for solving equations in some dynamical systems problems / Gasull i Embid, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Lázaro, J. Tomás (Universitat Politècnica de Catalunya. Departament de Matemàtiques) ; Torregrosa, Joan (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We show how the use of rational parameterizations facilitates the study of the number of solutions of many systems of equations involving polynomials and square roots of polynomials. We illustrate the effectiveness of this approach, applying it to several problems appearing in the study of some dynamical systems. [...]
2019 - 10.1007/s12346-018-0300-5
Qualitative Theory of Dynamical Systems, Vol. 18, Issue 2 (August 2019) , p. 583-602  
2.
32 p, 490.7 KB On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory / Acosta-Humánez, Primitivo B. (Universidad del Atlántico and Intelectual.Co. Department of Mathematics (Colombia)) ; Lázaro, J. Tomás (Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I) ; Morales Ruiz, Juan J. (Universidad Politécnica de Madrid. Departamento de Matemática Aplicada) ; Pantazi, Chara (Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I)
We study the integrability of polynomial vector fields using Galois theory of linear differential equations when the associated foliations is reduced to a Riccati type foliation. In particular we obtain integrability results for some families of quadratic vector fields, Liénard equations and equations related with special functions such as Hypergeometric and Heun ones. [...]
2015 - 10.3934/dcds.2015.35.1767
Discrete and continuous dynamical systems. Series A, Vol. 35, Issue 5 (May 2015) , p. 1767-1800  
3.
28 p, 448.6 KB Differential Galois theory and non-integrability of planar polynomial vector fields / Acosta-Humánez, Primitivo B. (Universidad Simón Bolívar (Colombia). Facultad de Ciencias Básicas y Biomédicas) ; Lázaro, J. Tomás. (Universitat Politècnica de Catalunya. Departament de Matemàtiques) ; Morales-Ruiz, Juan J. (Universidad Politécnica de Madrid. Departamento de Matemática Aplicada) ; Pantazi, Chara (Universitat Politècnica de Catalunya. Departament de Matemàtica)
We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. [...]
2018 - 10.1016/j.jde.2018.02.016
Journal of differential equations, Vol. 264, issue 12 (June 2018) , p. 7183-7212  

Vea también: autores con nombres similares
1 Lázaro, J. L.
2 Lázaro, J. Tomás
1 Lázaro, J. Tomás.
1 Lázaro, J.L.
¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.