Results overview: Found 6 records in 0.03 seconds.
Articles, 6 records found
Articles 6 records found  
1.
31 p, 10.1 MB Trapezoid central configurations / Corbera Subirana, Montserrat (Universitat de Vic. Departament d'Enginyeries) ; Cors Iglesias, Josep Maria (Universitat Politècnica de Catalunya. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pérez-Chavela, Ernesto (UAM-Iztapalapa(México). Departamento de Matemáticas)
We classify all planar four-body central configurations where two pairs of the bodies are on parallel lines. Using cartesian coordinates, we show that the set of four-body trapezoid central configurations with positive masses forms a two-dimensional surface where two symmetric families, the rhombus and isosceles trapezoid, are on its boundary. [...]
2019 - 10.1016/j.amc.2018.10.066
Applied Mathematics and Computation, Vol. 346 (April 2019) , p. 127-142  
2.
6 p, 584.8 KB Zero-Hopf bifurcation for a class of Lorenz-type systems / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pérez-Chavela, Ernesto (UAM-Iztapalapa(México). Departamento de Matemáticas) ; Alfaro Aguilar, Felipe (UACM(México). Academia de Matemáticas)
We apply the averaging theory to a class of three-dimensional autonomous quadratic polynomial differential systems known as Lorenz-type systems, and we prove the existence of a small amplitude periodic orbit bifurcating from a degenerate zero-Hopf equilibrium of these systems.
2014 - 10.3934/dcdsb.2014.19.1731
Discrete and Continuous Dynamical Systems. Series B, Vol. 19 Núm. 6 (2014) , p. 1731-1736  
3.
24 p, 448.9 KB Spatial bi-stacked central configurations formed by two dual regular polyhedra / Corbera Subirana, Montserrat (Universitat de Vic. Departament de Tecnologies Digitals i de la Informació) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pérez-Chavela, Ernesto (UAM-Iztapalapa(México). Departamento de Matemáticas)
In this paper we prove the existence of two new families of spatial stacked central configurations, one consisting of eight equal masses on the vertices of a cube and six equal masses on the vertices of a regular octahedron, and the other one consisting of twenty masses at the vertices of a regular dodecahedron and twelve masses at the vertices of a regular icosahedron. [...]
2014 - 10.1016/j.jmaa.2013.12.015
Journal of mathematical analysis and applications, Vol. 413 Núm. 2 (2014) , p. 648-659  
4.
9 p, 320.5 KB Periodic orbits for a class of galactic potentials / Alfaro Aguilar, Felipe (UACM(México). Academia de Matemáticas) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pérez-Chavela, Ernesto (UAM-Iztapalapa(México). Departamento de Matemáticas)
In this work, applying general results from averaging theory, we find periodic orbits for a class of Hamiltonian systems H whose potential models the motion of elliptic galaxies. Using the above periodic orbits on the energy level H = h we provide information about the non-integrability, in the sense of Liouville-Arnold, of the respective Hamiltonian system generated by H.
2013 - 10.1007/s10509-012-1318-9
Astrophysics and Space Science. An International Journal of Astronomy, Astrophysics and Space Science, Vol. 344 Núm. 1 (2013) , p. 39-44  
5.
14 p, 351.0 KB New stacked central configurations for the planar 5-body problem / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Mello, Luis Fernando (Universidade Federal de Itajubá (Brasil). Instituto de Matemática e Computação) ; Pérez-Chavela, Ernesto (UAM-Iztapalapa. Departamento de Matemáticas)
2011 - 10.1007/s10569-011-9342-6
Celestial Mechanics & Dynamical Astronomy. An International Journal of Space Dynamics, Vol. 110 (2011) , p. 43-52  
6.
8 p, 371.9 KB Limit cycles for a class of second order differential equations / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pérez-Chavela, Ernesto (UAM-Iztapalapa(México). Departamento de Matemáticas)
We study the limit cycles of a wide class of second order differential equations, which can be seen as a particular perturbation of the harmonic oscillator. In particular, by choosing adequately the perturbed function we show, using the averaging theory, that it is possible to obtain as many limit cycles as we want.
2011 - 10.1016/j.physleta.2011.01.011
Physics Letters. A, Vol. 375 (2011) , p. 1080-1083  

See also: similar author names
Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.