Resultats globals: 101 registres trobats en 0.02 segons.
Articles, 100 registres trobats
Documents de recerca, 1 registres trobats
Articles 100 registres trobats  1 - 10següentfinal  anar al registre:
1.
Zero-Hopf bifurcations in three-dimensional chaotic systems with one stable equilibrium / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Messias, Marcelo (Universidade Estadual Paulista. Departamento de Matemática e Computação (Brazil)) ; De Carvalho Reinol, Alisson (Universidade Tecnológica Federal Do Paraná. Departamento Acadêmico de Matemática (Brazil))
In (Molaie et al. , Int J Bifurcat Chaos 23 (2013) 1350188) the authors provided the expressions of twenty three quadratic differential systems in R3 with the unusual feature of having chaotic dynamics coexisting with one stable equilibrium point. [...]
2020 - 10.1142/S0218127420501898
International Journal of Bifurcation and Chaos, Vol. 30, Issue 13 (October 2020) , art. 2050189  
2.
Periodic orbits bifurcating from a Hopf equilibrium of 2-dimensional polynomial Kolmogorov systems of arbitrary degree / Djedid, Djamila (University of Annaba. Department of Mathematics (Algeria)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Makhlouf, Amar (University of Annaba. Department of Mathematics (Algeria))
A Hopf equilibrium of a differential system in R2 is an equilibrium point whose linear part has eigenvalues ±ωi with ω ≠ 0. We provide necessary and sufficient conditions for the existence of a limit cycle bifurcating from a Hopf equilibrium of 2-dimensional polynomial Kolmogorov systems of arbitrary degree. [...]
2021 - 10.1016/j.chaos.2020.110489
Chaos, solitons and fractals, Vol. 142 (January 2021) , art. 110489  
3.
Limit cycles from a monodromic infinity in planar piecewise linear systems / Freire, Emilio (Universidad de Sevilla. Departamento Matemática Aplicada II) ; Ponce, Enrique (Universidad de Sevilla. Departamento Matemática Aplicada II) ; Torregrosa, Joan (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Torres, Francisco (Universidad de Sevilla. Departamento Matemática Aplicada II)
Planar piecewise linear systems with two linearity zones separated by a straight line and with a periodic orbit at infinity are considered. By using some changes of variables and parameters, a reduced canonical form with five parameters is obtained. [...]
2021 - 10.1016/j.jmaa.2020.124818
Journal of mathematical analysis and applications, Vol. 496, Issue 2 (April 2021) , art. 124818  
4.
Phase portraits and bifurcation diagram of the Gray-Scott model / Chen, Ting (Guangdong University of Finance and Economics. School of Statistics and Mathematics (China)) ; Li, Shimin (Guangdong University of Finance and Economics. School of Statistics and Mathematics (China)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We give a complete classification of the phase portraits in the Poincaré disk for the cubic polynomial systems ˙ x = 1−x−axy2, ˙ y = −by + axy2, in R2 according with the values of its two parameters a and b. [...]
2021 - 10.1016/j.jmaa.2020.124840
Journal of mathematical analysis and applications, Vol. 496, Issue 2 (April 2021) , art. 124840  
5.
The zero-Hopf bifurcations in the Kolmogorov systems of degree 3 in R3 / Diz-Pita, Érika (Universidade de Santiago de Compostela. Departamento de Estatística, Análise Matemática e Optimización) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Otero-Espinar, M. Victoria (Universidade de Santiago de Compostela. Departamento de Estatística, Análise Matemática e Optimización) ; Valls, Clàudia 1973- (Universidade de Lisboa. Instituto Superior Técnico. Departamento de Matemática (Portugal))
In this work we study the periodic orbits which bifurcate from all zero-Hopf bifurcations that an arbitrary Kolmogorov system of degree 3 in R3 can exhibit. The main tool used is the averaging theory.
2021 - 10.1016/j.cnsns.2020.105621
Communications in nonlinear science and numerical simulation, Vol. 95 (April 2021) , art. 105621  
6.
Criticality via first order development of the period constants / Sánchez-Sánchez, Iván (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Torregrosa, Joan (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
In this work we study the criticality of some planar systems of polynomial differential equations having a center for various low degrees n. To this end, we present a method which is equivalent to the use of the first non-identically zero Melnikov function in the problem of limit cycles bifurcation, but adapted to the period function. [...]
2021 - 10.1016/j.na.2020.112164
Nonlinear Analysis : Theory, Methods and Applications, Vol. 203 (February 2021) , art. 112164  
7.
25 p, 24.1 MB Approximate Analytical Periodic Solutions to the Restricted Three-Body Problem with Perturbation, Oblateness, Radiation and Varying Mass / Gao, Fabao (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Wang, Yongqing (Yangzhou University. School of Mathematical Science)
Against the background of a restricted three-body problem consisting of a supergiant eclipsing binary system, the two primaries are composed of a pair of bright oblate stars whose mass changes with time. [...]
2020 - 10.3390/universe6080110
Universe, Vol. 6, Núm. 8 (August 2020) , art. 110  
8.
Limit cycles bifurcating of Kolmogorov systems in R2 and in R3 / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Martínez, Y. Paulina (Centre de Recerca Matemàtica) ; Valls, Clàudia 1973- (Universidade de Lisboa. Instituto Superior Técnico. Departamento de Matemática)
In this work we consider the Kolmogorov system of degree 3 in R2 and R3 having an equilibrium point in the positive quadrant and octant, respectively. We provide sufficient conditions in order that the equilibrium point will be a Hopf point for the planar case and a zero-Hopf point for the spatial one. [...]
2020 - 10.1016/j.cnsns.2020.105401
Communications in nonlinear science and numerical simulation, Vol. 91 (December 2020) , art. 105401  
9.
4-dimensional zero-Hopf bifurcation for polynomial differentials systems with cubic homogeneous nonlinearities via averaging theory / Feddaoui, Amina (University of Annaba. Department of Mathematics (Algeria)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Makhlouf, Ammar (University of Annaba. Department of Mathematics (Algeria))
The averaging theory of second order shows that for polynomial differential systems in ℝ4 with cubic homogeneous nonlinearities at least nine limit cycles can be born in a zero-Hopf bifurcation.
2020 - 10.1504/IJDSDE.2020.109106
International Journal of Dynamical Systems and Differential Equations, Vol. 10, Issue 4 (2020) , p. 321-328  
10.
N-dimensional zero-hopf bifurcation of polynomial differential systems via averaging theory of second order / Kassa, Sara (University of Annaba. Department of Mathematics (Algeria)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Makhlouf, Ammar (University of Annaba. Department of Mathematics (Algeria))
Using the averaging theory of second order, we study the limit cycles which bifurcate from a zero-Hopf equilibrium point of polynomial vector fields with cubic nonlinearities in ℝn. We prove that there are at least 3n-2 limit cycles bifurcating from such zero-Hopf equilibrium points. [...]
2020 - 10.1007/s10883-020-09501-6
Journal of Dynamical and Control Systems, (June 2020)  

Articles : 100 registres trobats   1 - 10següentfinal  anar al registre:
Documents de recerca 1 registres trobats  
1.
132 p, 1.2 MB Dois métodos para a investigação de ciclos limites que bifurcam de centros / Rezende, Alex Carlucci ; Oliveira, Regilene Delazari dos Santos, dir.
Um dos mais investigados problemas na teoria qualitativa dos sistemas dinâmicos no plano é o XVI problema de Hilbert que trata dos ciclos limites. Mais precisamente, a segunda parte do referido problema questiona sobre o número máximo de ciclos limites de um sistema diferencial polinomial plano de grau n. [...]
One of the most investigated problems in the qualitative theory of dynamical systems in the plane is the XVI Hilbert's problem which deals with limit cycles. More precisely, the second part of the problem asks about the maximum number of limit cycles of a polynomial differential system of degree n. [...]

2011  

Us interessa rebre alertes sobre nous resultats d'aquesta cerca?
Definiu una alerta personal via correu electrònic o subscribiu-vos al canal RSS.