Resultats globals: 71 registres trobats en 0.02 segons.
Articles, 71 registres trobats
Articles 71 registres trobats  1 - 10següentfinal  anar al registre:
1.
34 p, 632.0 KB Asymptotic Development of an Integral Operator and Boundedness of the Criticality of Potential Centers / Rojas, David (Universitat de Girona. Departament d'Informàtica, Matemàtica Aplicada i Estadística)
We study the asymptotic development at infinity of an integral operator. We use this development to give sufficient conditions to upper bound the number of critical periodic orbits that bifurcate from the outer boundary of the period function of planar potential centers. [...]
2019 - 10.1007/s10884-019-09753-2
Journal of dynamics and differential equations, (April 2019)  
2.
20 p, 1.7 MB A Route to Chaos in the Boros-Moll Map / Gardini, Laura (University of Urbino. Department of Economics Society Politics) ; Mañosa Fernández, Víctor (Universitat Politècnica de Catalunya. Departament de Matemàtiques) ; Sushko, Iryna (National Academy of Sciences of Ukraine)
The Boros-Moll map appears as a subsystem of a Landen transformation associated to certain rational integrals and its dynamics is related to their convergence. In the paper, we study the dynamics of a one-parameter family of maps which unfold the Boros-Moll one, showing that the existence of an unbounded invariant chaotic region in the Boros-Moll map is a peculiar feature within the family. [...]
2019 - 10.1142/S021812741930009X
International journal of bifurcation and chaos in applied sciences and engineering, Vol. 29, Núm. 4 (April 2019) , art. 1930009  
3.
13 p, 271.6 KB Periodic orbits bifurcating from a nonisolated zero-Hopf equilibrium of three-dimensional differential systems revisited / Cândido, Murilo R. (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
In this paper, we study the periodic solutions bifurcating from a nonisolated zero–Hopf equilib- rium in a polynomial differential system of degree two in R³. More specifically, we use recent results of averaging theory to improve the conditions for the existence of one or two periodic solutions bifurcating from such a zero–Hopf equilibrium. [...]
2018 - 10.1142/S021812741850058X
International journal of bifurcation and chaos in applied sciences and engineering, Vol. 28, no. 5 (2018) , art. 1850058  
4.
29 p, 5.8 MB Zero--Hopf bifurcations in 3-dimensional differential systems with no equilibria / Cândido, Murilo R. (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We use averaging theory for studying the Hopf and zero--Hopf bifurcations in some chaotic differential systems. These differential systems have a chaotic attractor and no equilibria. Numerically we show the relation between the existence of the periodic solutions studied in these systems and their chaotic attractors.
2018 - 10.1016/j.matcom.2018.03.008
Mathematics and computers in simulation, Vol. 151 (Sep. 2018) , p. 54-76  
5.
20 p, 447.6 KB On uniqueness of limit cycles in general Bogdanov-Takens bifurcation / Han, Maoan (Shanghai Normal University. Department of Mathematics) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Yang, Junmin (Hebei Normal University. College of Mathematics and Information Science)
In this paper we present a complete study to the well-known Bogdanov-Takens bifurcation and give a rigorous proof for the uniqueness of limit cycles.
2018 - 10.1142/S0218127418501158
International journal of bifurcation and chaos in applied sciences and engineering, Vol. 28, No. 9 (2018) , art. 1850115  
6.
15 p, 343.1 KB Algebraic limit cycles in piecewise linear differential systems / Buzzi, Claudio A. (Universidade Estadual Paulista (Brasil). Department of Mathematics) ; Gasull i Embid, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Torregrosa, Joan (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
This paper is devoted to study the algebraic limit cycles of planar piecewise linear differential systems. In particular we present examples exhibiting two explicit hyperbolic algebraic limit cycles, as well as some 1-parameter families with a saddle-node bifurcation of algebraic limit cycles. [...]
2018 - 10.1142/S0218127418500396
International journal of bifurcation and chaos in applied sciences and engineering, Vol. 28, No. 3 (2018) , art. 1850039  
7.
26 p, 687.0 KB Simultaneous bifurcation of limit cycles from a cubic piecewise center with two period annuli / Da Cruz, Leonardo Pereira Costa (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Torregrosa, Joan (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We study the number of periodic orbits that bifurcate from a cubic polynomial vector field having two period annuli via piecewise perturbations. The cubic planar system (x',y')= (-y((x-1)² + y²),x((x-1)² + y²) has simultaneously a center at the origin and at infinity. [...]
2018 - 10.1016/j.jmaa.2017.12.072
Journal of mathematical analysis and applications, Vol. 461, issue 1 (May 2018) , p. 248-272  
8.
15 p, 468.0 KB A criticality result for polycycles in a family of quadratic reversible centers / Rojas, David (Universidad de Granada. Departamento de Matemática Aplicada) ; Villadelprat, Jordi (Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques)
We consider the family of dehomogenized Loud's centers Xµ_=y(x-1)∂ₓ + (x + Dx² + Fy²)_y, where µ=(D,F)єR², and we study the number of critical periodic orbits that emerge or dissapear from the polycycle at the boundary of the period annulus. [...]
2018 - 10.1016/j.jde.2018.01.042
Journal of differential equations, Vol. 264, issue 11 (June 2018) , p. 6585-6602  
9.
23 p, 533.7 KB Analytic tools to bound the criticality at the outer boundary of the period annulus / Mañosas Capellades, Francesc (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Rojas, David (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Villadelprat, Jordi (Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques)
In this paper we consider planar potential differential systems and we study the bifurcation of critical periodic orbits from the outer boundary of the period annulus of a center. In the literature the usual approach to tackle this problem is to obtain a uniform asymptotic expansion of the period function near the outer boundary. [...]
2018 - 10.1007/s10884-016-9559-x
Journal of dynamics and differential equations, Vol. 30, issue 3 (Sep. 2018) , p. 883-909  
10.
30 p, 1.1 MB Global dynamics of a SD oscillator / Chen, Hebai (Fuzhou University. College of Mathematics and Computer Science) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Tang, Yilei (Shanghai Jiao Tong University. School of Mathematical Sciences)
In this paper we derive the global bifurcation diagrams of a SD oscillator which exhibits both smooth and discontinuous dynamics depending on the value of a parameter a. We research all possible bifurcations of this system, including Pitchfork bifurcation, degenerate Hopf bifurcation, Homoclinic bifurcation, Double limit cycle bifurcation, Bautin bifurcation and Bogdanov-Takens bifurcation. [...]
2018 - 10.1007/s11071-017-3979-y
Nonlinear dynamics, Vol. 91, issue 3 (Feb. 2018) , p. 1755-1777  

Articles : 71 registres trobats   1 - 10següentfinal  anar al registre:
Us interessa rebre alertes sobre nous resultats d'aquesta cerca?
Definiu una alerta personal via correu electrònic o subscribiu-vos al canal RSS.