Resultats globals: 7 registres trobats en 0.03 segons.
Articles, 7 registres trobats
Articles 7 registres trobats  
1.
12 p, 336.3 KB New central configurations of the (n+1)-body problem / Fernandes, Antonio Carlos (Universidade Federal de Itajubá (Brasil). Instituto de Matemática e Computação) ; Garcia, Braulio Augusto (Universidade Federal de Itajubá (Brasil). Instituto de Matemática e Computação) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Mello, Luis Fernando (Universidade Federal de Itajubá (Brasil). Instituto de Matemática e Computação)
In this article we study central configurations of the (n+1)-body problem. For the planar (n+1)-body problem we study central configurations performed by ≥2 bodies with equal masses at the vertices of a regular n--gon and one body with null mass. [...]
2018 - 10.1016/j.geomphys.2017.11.003
Journal of geometry and physics, Vol. 124 (Jan. 2018) , p. 199-207  
2.
8 p, 285.3 KB A Four-body convex central configuration with perpendicular diagonals is necessarily a kite / Corbera Subirana, Montserrat (Universitat de Vic. Departament d'Enginyeries) ; Cors, Josep Maria (Universitat Politècnica de Catalunya. Departament de Matemàtiques) ; Roberts, Gareth E. (College of the Holy Cross. Department of Mathematics and Computer Science)
We prove that any four-body convex central configuration with perpendicular diagonals must be a kite configuration. The result extends to general power-law potential functions, including the planar four-vortex problem.
2018 - 10.1007/s12346-017-0238-z
Qualitative theory of dynamical systems, Vol. 17, issue 2 (Jul. 2018) , p. 367-374  
3.
17 p, 410.5 KB Convex central configurations of the 4-body problem with two pairs of equal masses / Fernandes, Antonio Carlos (Universidade Federal de Itajubá (Brasil). Instituto de Matemática e Computação) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Mello, Luis Fernando
MacMillan and Bartky in 1932 proved that there is a unique isosceles trapezoid central configuration of the 4--body problem when two pairs of equal masses are located at adjacent vertices. After this result the following conjecture was well known between people working on central configurations: The isosceles trapezoid is the unique convex central configuration of the planar 4--body problem when two pairs of equal masses are located at adjacent vertices. [...]
2017 - 10.1007/s00205-017-1134-z
Archive for Rational Mechanics and Analysis, 2017  
4.
9 p, 245.8 KB Uniqueness results for co-circular central configurations for power-law potentials / Cors Iglesias, Josep Maria (Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III) ; Hall, Glen Richard (Boston University. Department of Mathematics and Statistics) ; Roberts, Gareth E. (College of the Holy Cross. Dept. of Mathematics and Computer Science)
For a class of potential functions including those used for the planar n-body and n-vortex problems, we investigate co-circular central configurations whose center of mass coincides with the center of the circle containing the bodies. [...]
2014 - 10.1016/j.physd.2014.05.003
Physica D. Nonlinear Phenomena, Vol. 280-281 (2014) , p. 44-47  
5.
9 p, 661.1 KB The symmetric central configurations of the 4-body problem with masses m_1=m_2 m_3=m_4 / Álvarez-Ramírez, Martha (UAM–Iztapalapa(México). Departamento de Matemáticas) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We characterize the planar central configurations of the 4-body problem with masses m1 = m2 ̸= m3 = m4 which have an axis of symmetry. It is known that this problem has exactly two classes of convex central configurations, one with the shape of a rhombus and the other with the shape of an isosceles trapezoid. [...]
2013 - 10.1016/j.amc.2012.12.036
Applied Mathematics and Computation, Vol. 219 (2013) , p. 5996-6001  
6.
5 p, 641.9 KB A note on the Dziobek central configurations / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
For the Newtonian n-body problem in R^n−2 with n ≥ 3 we prove that the following two statements are equivalent. (a) Let x be a Dziobek central configuration having one mass located at the center of mass. [...]
2015 - 10.1090/S0002-9939-2015-12502-6
Proceedings of the American Mathematical Society, Vol. 143 Núm. 8 (2015) , p. 3587-3591  
7.
13 p, 611.4 KB The co-circular central configurations of the 5 body problem / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Valls, Clàudia (Universidade Técnica de Lisboa. Departamento de Matemática)
Chenciner in 2001 asked: Is the regular n-gon with equal masses the unique central configuration such that all the bodies lie on a circle, and the center of mass coincides with the center of the circle? This question has a positive answer for n = 3. [...]
2015 - 10.1007/s10884-015-9429-y
Journal of Dynamics and Differential Equations, Vol. 27 (2015) , p. 55-67  

Us interessa rebre alertes sobre nous resultats d'aquesta cerca?
Definiu una alerta personal via correu electrònic o subscribiu-vos al canal RSS.