Resultados globales: 5 registros encontrados en 0.02 segundos.
Artículos, Encontrados 5 registros
Artículos Encontrados 5 registros  
1.
34 p, 632.0 KB Asymptotic Development of an Integral Operator and Boundedness of the Criticality of Potential Centers / Rojas, David (Universitat de Girona. Departament d'Informàtica, Matemàtica Aplicada i Estadística)
We study the asymptotic development at infinity of an integral operator. We use this development to give sufficient conditions to upper bound the number of critical periodic orbits that bifurcate from the outer boundary of the period function of planar potential centers. [...]
2019 - 10.1007/s10884-019-09753-2
Journal of dynamics and differential equations, (April 2019)  
2.
15 p, 468.0 KB A criticality result for polycycles in a family of quadratic reversible centers / Rojas, David (Universidad de Granada. Departamento de Matemática Aplicada) ; Villadelprat, Jordi (Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques)
We consider the family of dehomogenized Loud's centers Xµ_=y(x-1)∂ₓ + (x + Dx² + Fy²)_y, where µ=(D,F)єR², and we study the number of critical periodic orbits that emerge or dissapear from the polycycle at the boundary of the period annulus. [...]
2018 - 10.1016/j.jde.2018.01.042
Journal of differential equations, Vol. 264, issue 11 (June 2018) , p. 6585-6602  
3.
23 p, 533.7 KB Analytic tools to bound the criticality at the outer boundary of the period annulus / Mañosas Capellades, Francesc (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Rojas, David (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Villadelprat, Jordi (Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques)
In this paper we consider planar potential differential systems and we study the bifurcation of critical periodic orbits from the outer boundary of the period annulus of a center. In the literature the usual approach to tackle this problem is to obtain a uniform asymptotic expansion of the period function near the outer boundary. [...]
2018 - 10.1007/s10884-016-9559-x
Journal of dynamics and differential equations, Vol. 30, issue 3 (Sep. 2018) , p. 883-909  
4.
19 p, 504.7 KB Study of the period function of a two-parameter family of centers / Mañosas Capellades, Francesc (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Rojas, David (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Villadelprat, Jordi (Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques)
In this paper we study the period function of ẍ = (1 x) p − (1 x) q , with p, q ∈ R and p > q. We prove three independent results. The first one establishes some regions in the parameter space where the corresponding center has a monotonous period function. [...]
2017 - 10.1016/j.jmaa.2017.02.054
Journal of Mathematical Analysis and Applications, Vol. 452 (2017) , p. 188-208  
5.
41 p, 612.7 KB The criticality of centers of potential systems at the outer boundary / Mañosas Capellades, Francesc (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Rojas, David (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Villadelprat, Jordi (Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques)
The number of critical periodic orbits that bifurcate from the outer boundary of a potential center is studied. We call this number the criticality at the outer boundary. Our main results provide sufficient conditions in order to ensure that this number is exactly 0 and 1. [...]
2016 - 10.1016/j.jde.2015.11.040
Journal of Differential Equations, Vol. 260 (2016) , p. 4918-4972  

¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.