Resultados globales: 7 registros encontrados en 0.04 segundos.
Artículos, Encontrados 7 registros
Artículos Encontrados 7 registros  
1.
6 p, 1.8 MB Periods of continuous maps on closed surfaces / Guirao, Juan Luis Garcia (Universidad Politécnica de Cartagena (Múrcia). Departamento de Matemática Aplicada y Estadística) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
2017 - 10.1216/RMJ-2017-47-4-1089
The Rocky Mountain Journal of Mathematics, Vol. 47 Núm. 4 (2017) , p. 1089-1096  
2.
11 p, 2.2 MB On the set of periods for the Morse-Smale diffeomorphisms on the disc with n holes / Guirao, Juan Luis Garcia (Universidad Politécnica de Cartagena. Departamento de Matemática Aplicada y Estadística) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
For every homological class we present a complete description of the minimal Lefschetz set of periods for the Morse–Smale diffeomorphisms without periodic points in the boundary defined on the disc with n holes Dn for n = 1, 2, 3, 4, 5 by using the Lefschetz zeta function. [...]
2013 - 10.1080/10236198.2012.722630
Journal of Difference Equations and Applications, Vol. 19 Núm. 7 (2013) , p. 1161-1173  
3.
15 p, 463.9 KB A survey on the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on some closed manifolds / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Sirvent, Víctor F. (Universidad Simón Bolívar(Venezuela). Departamento de Matemáticas)
We present the actual state of the study of the minimal sets of Lefschetz periods MPerL (f ) for the Morse-Smale diffeomorphisms on some closed manifolds, as the connected compact surfaces (orientable or not) without boundary, the n-dimensional torus and some other manifolds. [...]
2013
Publicaciones Matemàticas del Uruguay, Vol. 14 (2013) , p. 155-169  
4.
14 p, 327.8 KB The set of periods for the Morse-Smale diffeomorphisms on T^2 / Guirao, Juan Luis Garcia (Universidad Politécnica de Cartagena. Departamento de Matemática Aplicada y Estadística) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
In the present paper, by using Lefschetz zeta function, we study the set of periods of the Morse-Smale diffeomorphisms defined on the two-dimensional torus for every homotopy class.
2012
Dynamics of Continuous, Discrete & Impulsive Systems. Series A. Mathematical Analysis, Vol. 19 Núm. 4 (2012) , p. 471-484  
5.
11 p, 299.9 KB Minimal periods of holomorphic maps on complex tori / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Rong, Feng (Shanghai Jiao Tong University. Department of Mathematics)
We study the set of minimal periods of holomorphic self–maps of one and two dimensional complex tori. In particular we characterize when the set of minimal periods of such maps is finite. In fact we have an algorithm for doing this characterization for holomorphic self–maps of an arbitrary dimensional complex tori.
2012 - 10.1080/10236198.2011.611133
Journal of Difference Equations and Applications, Vol. 18 Núm. 12 (2012) , p. 2059-2068  
6.
16 p, 2.2 MB Minimal sets of periods for Morse-Smale diffeomorphisms on non-orientable compact surfaces without boundary / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Sirvent, Víctor F. (Universidad Simón Bolívar(Venezuela). Departamento de Matemáticas)
We study the minimal set of (Lefschetz) periods of the C1 Morse–Smale diffeomorphisms on a non–orientable compact surface without boundary inside its class of homology. In fact our study extends to the C1 diffeomorphisms on these surfaces having finitely many periodic orbits all of them hyperbolic and with the same action on the homology as the Morse–Smale diffeomorphisms. [...]
2012 - 10.1080/10236198.2011.647006
Journal of Difference Equations and Applications, Vol. 19 Núm. 3 (2012) , p. 402-417  
7.
45 p, 678.8 KB On the set of periods of sigma maps of degree 1 / Alsedà i Soler, Lluís  (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Ruette, Sylvie (Université Paris-Sud 11. Laboratoire de Mathématiques)
We study the set of periods of degree 1 continuous maps from σ into itself, where σ denotes the space shaped like the letter σ (i. e. , a segment attached to a circle by one of its endpoints). Since the maps under consideration have degree 1, the rotation theory can be used. [...]
2015 - 10.3934/dcds.2015.35.4683
Discrete and Continuous Dynamical Systems. Series A, Vol. 35 Núm. 10 (2015) , p. 4683-4734  

¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.