UAB Digital Repository of Documents 8 records found  Search took 0.02 seconds. 
1.
Limit cycles bifurcating of Kolmogorov systems in R2 and in R3 / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Martínez Mancilla, Yohanna Paulina (Centre de Recerca Matemàtica) ; Valls, Clàudia 1973- (Universidade de Lisboa. Instituto Superior Técnico. Departamento de Matemática)
In this work we consider the Kolmogorov system of degree 3 in R2 and R3 having an equilibrium point in the positive quadrant and octant, respectively. We provide sufficient conditions in order that the equilibrium point will be a Hopf point for the planar case and a zero-Hopf point for the spatial one. [...]
2020 - 10.1016/j.cnsns.2020.105401
Communications in nonlinear science and numerical simulation, Vol. 91 (December 2020) , art. 105401  
2.
Connectivity of the Julia set for the Chebyshev-Halley family on degree n polynomials / Campos, Beatriz (Universitat Jaume I. Institut Universitari de Matemàtiques i Aplicacions de Castelló) ; Canela Sánchez, Jordi (Université Paris-Est Marne-la-Vallée (France)) ; Vindel, Pura (Universitat Jaume I. Institut Universitari de Matemàtiques i Aplicacions de Castelló)
We study the Chebyshev-Halley family of root finding algorithms from the point of view of holomorphic dynamics. Numerical experiments show that the speed of convergence to the roots may be slower when the basins of attraction are not simply connected. [...]
2020 - 10.1016/j.cnsns.2019.105026
Communications in nonlinear science and numerical simulation, Vol. 82 (March 2020) , art. 105026  
3.
Equilic quadrilateral central configurations / Álvarez-Ramírez, Martha (Universidad Autónoma Metropolitana - Unidad Iztapalapa. Departamento de Matemáticas (México)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
An equilic quadrilateral is a quadrilateral with one pair of opposite sides having the same length, which has angles of inclination whose sum is 2π/3. We characterize the central configurations of the 4-body problem whose four positive masses are at the vertices of equilic quadrilaterals.
2019 - 10.1016/j.cnsns.2019.104872
Communications in nonlinear science and numerical simulation, Vol. 78 (November 2019) , art. 104872  
4.
25 p, 4.7 MB Convergence regions for the Chebyshev--Halley family / Campos, Beatriz (Institut Universitari de Matemàtiques i Aplicacions de Castelló) ; Canela Sánchez, Jordi (Institut Universitari de Matemàtiques i Aplicacions de Castelló) ; Vindel, Pura (Institut Universitari de Matemàtiques i Aplicacions de Castelló)
In this paper, we study the dynamical behaviour of the Chebyshev--Halley family applied on a family of degree n polynomials. For n=2 we bound the set of parameters for which the iterative methods have convergence regions which do not correspond to the basins of attraction of the roots. [...]
2018 - 10.1016/j.cnsns.2017.08.024
Communications in nonlinear science and numerical simulation, Vol. 56 (March 2018) , p. 508-525  
5.
22 p, 627.8 KB Periodic points of a Landen transformation / Gasull i Embid, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llorens, Mireia (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Mañosa Fernández, Víctor 1971- (Universitat Politècnica de Catalunya. Departament de Matemàtiques)
We prove the existence of 3-periodic orbits in a dynamical system associated to a Landen transformation previously studied by Boros, Chamberland and Moll, disproving a conjecture on the dynamics of this planar map introduced by the latter author. [...]
2018 - 10.1016/j.cnsns.2018.04.020
Communications in nonlinear science and numerical simulation, Vol. 64 (Nov. 2018) , p. 232-245  
6.
31 p, 3.3 MB Ejection-collision orbits in the RTBP / Ollé, Mercè (Universitat Politècnica de Catalunya. Departament de Matemàtiques) ; Rodríguez, Òscar (Universitat Politècnica de Catalunya. Departament de Matemàtiques) ; Soler, Jaume (Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental)
In this paper we analyse the ejection-collision (EC) orbits of the planar restricted three body problem. Being μ∈(0, 0. 5] the mass parameter, and taking the big (small) primary with mass 1 − μ (μ), an EC orbit will be an orbit that ejects from the big primary, does an excursion and collides with it. [...]
2018 - 10.1016/j.cnsns.2017.07.013
Communications in nonlinear science and numerical simulation, Vol. 55 (2018) , p. 298-315  
7.
11 p, 551.1 KB Hopf Bifurcation of a generalized Moon-Rand system / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Valls, Clàudia 1973- (Universidade Técnica de Lisboa. Departamento de Matemática)
We study the Hopf bifurcation from the equilibrium point at the origin of a generalized Moon-Rand system. We prove that the Hopf bifurcation can produce 8 limit cycles. The main tool for proving these results is the averaging theory of fourth order. [...]
2015 - 10.1016/j.cnsns.2014.06.041
Communications in nonlinear science and numerical simulation, Vol. 20 (2015) , p. 1070-1077  
8.
32 p, 2.6 MB Dynamics of the parabolic restricted three-body problem / Barrabés Vera, Esther (Universitat de Girona. Escola Politècnica Superior) ; Cors Iglesias, Josep Maria (Universitat Politècnica de Catalunya. Escola Politècnica Superior de Manresa) ; Ollé, Merce (Universitat Politècnica de Catalunya. Escola Tècnica Superior d'Enginyeria Industrial de Barcelona)
The main purpose of the paper is the study of the motion of a massless body attracted, under the Newton's law of gravitation, by two equal masses moving in parabolic orbits all over in the same plane, the planar parabolic restricted three-body problem. [...]
2015 - 10.1016/j.cnsns.2015.05.025
Communications in nonlinear science and numerical simulation, Vol. 29 (2015) , p. 400-415  

Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.