Depósito Digital de Documentos de la UAB Encontrados 26 registros  1 - 10siguientefinal  ir al registro: La búsqueda tardó 0.02 segundos. 
1.
The secant map applied to a real polynomial with multiple roots / Garijo, Antoni (Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques) ; Jarque i Ribera, Xavier (Universitat de Barcelona. Departament de Matemàtica Aplicada i Anàlisi)
We investigate the plane dynamical system given by the secant map applied to a polynomial p having at least one multiple root of multiplicity d > 1. We prove that the local dynamics around the fixed points associated to the roots of p depend on the parity of d.
2019 - 10.3934/dcds.2020133
Discrete and Continuous Dynamical Systems. Series A, 2019  
2.
40 p, 10.0 MB Dynamic rays of bounded-type transcendental self-maps of the punctured plane / Fagella Rabionet, Núria (Universitat de Barcelona. Departament de Matemàtiques i Informàtica) ; Martí-Pete, David (Open University. School of Mathematics and Statistics (UK))
We study the escaping set of functions in the class B∗, that is, transcendental self-maps of ℂ∗ for which the set of singular values is contained in a compact annulus of ℂ∗ that separates zero from infinity. [...]
2017 - 10.3934/dcds.2017134
Discrete and continuous dynamical systems. Series A, Vol. 37, Issue 6 (June 2017) , p. 3123-3160  
3.
22 p, 1.6 MB Classification of linear skew-products of the complex plane and an affine route to fractalization / Fagella Rabionet, Núria (Universitat de Barcelona. Departament de Matemàtiques i Informàtica) ; Jorba, Àngel (Universitat de Barcelona. Departament de Matemàtiques i Informàtica) ; Jorba-Cuscó, Marc (Universitat de Barcelona. Departament de Matemàtiques i Informàtica) ; Tatjer, Joan Carles (Universitat de Barcelona. Departament de Matemàtiques i Informàtica)
Linear skew products of the complex plane, θ↦θ+ω,z↦a(θ)z,} where θ∈T, z∈C, ω/2π is irrational, and [θ↦a(θ)∈C∖{0} is a smooth map, appear naturally when linearizing dynamics around an invariant curve of a quasi-periodically forced complex map. [...]
2019 - 10.3934/dcds.2019153
Discrete and continuous dynamical systems. Series A, Vol. 39, Issue 7 (July 2019) , p. 3767-3787  
4.
20 p, 5.8 MB Singular perturbations of Blaschke products and connectivity of Fatou components / Canela Sánchez, Jordi (Universitat Jaume I. Institut Universitari de Matemàtiques i Aplicacions de Castelló)
2017 - 10.3934/dcds.2017153
Discrete and continuous dynamical systems. Series A, Vol. 37, Issue 7 (July 2017) , p. 3567-3585  
5.
32 p, 490.7 KB On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory / Acosta-Humánez, Primitivo B. (Universidad del Atlántico and Intelectual.Co. Department of Mathematics (Colombia)) ; Lázaro, J. Tomás (Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I) ; Morales Ruiz, Juan J. (Universidad Politécnica de Madrid. Departamento de Matemática Aplicada) ; Pantazi, Chara (Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I)
We study the integrability of polynomial vector fields using Galois theory of linear differential equations when the associated foliations is reduced to a Riccati type foliation. In particular we obtain integrability results for some families of quadratic vector fields, Liénard equations and equations related with special functions such as Hypergeometric and Heun ones. [...]
2015 - 10.3934/dcds.2015.35.1767
Discrete and continuous dynamical systems. Series A, Vol. 35, Issue 5 (May 2015) , p. 1767-1800  
6.
35 p, 913.1 KB Phase portraits of linear type centers of polynomial hamiltonian systems with hamiltonian function of degree 5 of the form H = H1(x) + H2(y) / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Martinez Mancilla, Yohanna Paulina (Universidad del Bío-Bío. Departamento de Matemática) ; Vidal, Claudio (Universidad del Bío-Bío. Departamento de Matemática)
We study the phase portraits on the Poincaré disc for all the linear type centers of polynomial Hamiltonian systems of degree 5 with Hamiltonian function H(x, y) = H + H, where H = 1/2 x + a/3 x + a/4 x + a/5 x and H = 1/2 y + b/3 y + b/4 y + b/5 y as function of the six real parameters a, a, a, b, b and b with ab ≠ 0. [...]
2019 - 10.3934/dcds.2019004
Discrete and continuous dynamical systems. Series A, Vol. 39, Issue 1 (January 2019) , p. 75-113  
7.
21 p, 371.1 KB Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points / Cimà, Anna (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Gasull i Embid, Armengol (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Mañosa Fernández, Víctor 1971- (Universitat Politècnica de Catalunya. Departament de Matemàtiques)
We show that for periodic non-autonomous discrete dynamical systems, even when a common fixed point for each of the autonomous associated dynamical systems is repeller, this fixed point can became a local attractor for the whole system, giving rise to a Parrondo's dynamic type paradox.
2018 - 10.3934/dcds.2018038
Discrete and continuous dynamical systems. Series A, Vol. 38, issue 2 (Feb. 2018) , p. 889-904  
8.
13 p, 669.2 KB Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems / Braun, Francisco (Universidade Federal de Sâo Carlos Rod(Brasil). Departamento de Matemática) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Mereu, Ana Cristina (UFSCar(Brazil). Department of Physics, Chemistry and Mathematics)
In this paper we completely characterize trivial isochronous centers of degrees 5 and 7. Precisely, we provide formulas, up to linear change of coordinates, for the Hamiltonian H of the isochronous centers such that H =(f_1^2 f_2^2)/2 has degrees 6 and 8, and f = (f_1, f_2): R^2 R^2 is a polynomial map with D f = 1 and f(0,0) = (0,0).
2016 - 10.3934/dcds.2016029
Discrete and continuous dynamical systems. Series A, Vol. 36 Núm. 10 (2016) , p. 5245-5255  
9.
16 p, 818.1 KB Polynomial and linearized normal forms for almost periodic differential systems / Li, Weigu (Peking University. School of Mathematical Sciences) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Wu, Hao (Peking University. School of Mathematical Sciences)
For almost periodic differential systems ˙x = εf(x, t, ε) with x ∈ Cn, t ∈ R and ε > 0 small enough, we get a polynomial normal form in a neighborhood of a hyperbolic singular point of the system ˙x = ε limT→∞1T∫ T0f(x,t, 0) dt, if its eigenvalues are in the Poincaré domain. [...]
2016 - 10.3934/dcds.2016.36.345
Discrete and continuous dynamical systems. Series A, Vol. 36 Núm. 1 (2016) , p. 345-360  
10.
19 p, 777.2 KB Periodic solutios of El niño model thorugh the Vallis differential system / D. Euzébio, Rodrigo (UNESP(Brazil). Departament de Matemática) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
By rescaling the variables, the parameters and the periodic function of the Vallis differential system we provide sufficient conditions for the existence of periodic solutions and we also characterize their kind of stability. [...]
2014 - 10.3934/dcds.2014.34.3455
Discrete and continuous dynamical systems. Series A, Vol. 34 Núm. 9 (2014) , p. 3455-3469  

Depósito Digital de Documentos de la UAB : Encontrados 26 registros   1 - 10siguientefinal  ir al registro:
¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.