Depósito Digital de Documentos de la UAB Encontrados 6 registros  La búsqueda tardó 0.02 segundos. 
1.
13 p, 299.6 KB On a Class of Invariant Algebraic Curves for Kukles Systems / Osuna, Osvaldo (UMSNH(México). Instituto de Física y Matemáticas) ; Rebollo-Perdomo, Salomón (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Villaseñor, Gabriel (Instituto Tecnológico de Morelia(México). Departamento de Ciencias Básicas)
In this paper we give a new upper bound for the degree of a class of transversal to infinity invariant algebraic curves for polynomial Kukles systems of arbitrary degree. Moreover, we prove that a quadratic Kukles system having at least one transversal to infinity invariant algebraic curve is integrable.
2016 - 10.14232/ejqtde.2016.1.61
Electronic Journal of Qualitative Theory of Differential Equations, Vol. 2016 Núm. 61 (2016) , p. 1-12  
2.
12 p, 363.9 KB Analytic reducibility of nondegenerate centers: Cherkas systems / Giné, Jaume (Universitat de Lleida. Departament de Matemàtica) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
In this paper we study the center problem for polynomial differential systems and we prove that any center of an analytic differential system is analytically reducible. We also study the centers for the Cherkas polynomial differential systems x˙ = y, y˙ = P0(x) + P1(x)y + P2(x)y2, where Pi(x) are polynomials of degree n, P0(0) = 0 and P′0(0) < 0. [...]
2016 - 10.14232/ejqtde.2016.1.49
Electronic Journal of Qualitative Theory of Differential Equations, Vol. 49 (2016) , p. 1-10  
3.
23 p, 384.6 KB Centers of projective vector fields of spatial quasi-homogeneous systems with weight (m,m,n) and degree 2 on the sphere / Liang, Haihua (Guangdong Polytechnic Normal University(China). Department of Computer Science) ; Torregrosa, Joan (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
In this paper we study the centers of projective vector fields Q_T of three-dimensional quasi-homogeneous differential system d/dt=Q() with the weight (m,m,n) and degree 2 on the unit sphere S^2. We seek the sufficient and necessary conditions under which Q_T has at least one center on S^2. [...]
2016 - 10.14232/ejqtde.2016.1.103
Electronic Journal of Qualitative Theory of Differential Equations, Vol. 103 (2016) , p. 1-26  
4.
36 p, 1.5 MB Global configurations of singularities for quadratic differential systems with exactly two finite singularities of total multiplicity four / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Rezende, Alex C. (Universidade de São Paulo) ; Schlomiuk, Dana (Université de Montréal) ; Vulpe, Nicolae (Academy of Science of Moldova)
In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. [...]
2014 - 10.14232/ejqtde.2014.1.60
Electronic Journal of Qualitative Theory of Differential Equations, Vol. 60 (2014) , p. 1-43  
5.
15 p, 681.4 KB Periodic orbits for real planar polynomial vectors fields of degree n having n invariant straight lines taking into account their multiplicities / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Rodrigues, Ana (University of Exeter (UK). Mathematics Research Institute)
We study the existence and non-existence of periodic orbits and limit cycles for planar polynomial differential systems of degree n having n real invariant straight lines taking into account their multiplicities. [...]
2015 - 10.14232/ejqtde.2015.1.55
Electronic Journal of Qualitative Theory of Differential Equations, Vol. 55 (2015) , p. 1-15  
6.
60 p, 2.7 MB Global configurations of singularities for quadratic differential systems with exactly three finite singularities of total multiplicity four / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques) ; Vulpe, Nicolae (Academy of Science of Moldova)
In this article we obtain the geometric classification of singularities, finite and infinite, for the two subclasses of quadratic differential systems with total finite multiplicity m_f=4 possessing exactly three finite singularities, namely: systems with one double real and two complex simple singularities (31 configurations) and (ii) systems with one double real and two simple real singularities (265 configurations). [...]
2015 - 10.14232/ejqtde.2015.1.49
Electronic Journal of Qualitative Theory of Differential Equations, Vol. 49 (2015) , p. 1-60  

¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.