Depósito Digital de Documentos de la UAB Encontrados 4 registros  La búsqueda tardó 0.02 segundos. 
1.
N-dimensional zero-hopf bifurcation of polynomial differential systems via averaging theory of second order / Kassa, Sara (University of Annaba. Department of Mathematics (Algeria)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Makhlouf, Ammar (University of Annaba. Department of Mathematics (Algeria))
Using the averaging theory of second order, we study the limit cycles which bifurcate from a zero-Hopf equilibrium point of polynomial vector fields with cubic nonlinearities in ℝn. We prove that there are at least 3n-2 limit cycles bifurcating from such zero-Hopf equilibrium points. [...]
2020 - 10.1007/s10883-020-09501-6
Journal of Dynamical and Control Systems, (June 2020)  
2.
Global dynamics and bifurcation of periodic orbits in a modified Nosé-Hoover oscillator / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Messias, Marcelo (Universidade Estadual Paulista. Departamento de Matemática e Computação (Brazil)) ; Reinol, Alisson C. (Universidade Tecnológica Federal do Paraná. Departamento Acadêmico de Matemática (Brazil))
We perform a global dynamical analysis of a modified Nosé-Hoover oscillator, obtained as the perturbation of an integrable differential system. Using this new approach for studying such an oscillator, in the integrable cases, we give a complete description of the solutions in the phase space, including the dynamics at infinity via the Poincaré compactification. [...]
2020 - 10.1007/s10883-020-09491-5
Journal of Dynamical and Control Systems, (June 2020)  
3.
15 p, 434.9 KB New Family of Centers of Planar Polynomial Differential Systems of Arbitrary Even Degree / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Mousavi, Marzieh (Isfahan University of Technology. Department of Mathematical Sciences) ; Nabavi, Arefeh (Isfahan University of Technology. Department of Mathematical Sciences)
The problem of distinguishing between a focus and a center is one of the classical problems in the qualitative theory of planar differential systems. In this paper, we provide a new family of centers of polynomial differential systems of arbitrary even degree. [...]
2019 - 10.1007/s10883-019-09432-x
Journal of Dynamical and Control Systems, Vol. 25, issue 4 (Oct. 2019) , p. 619-630  
4.
6 p, 729.4 KB Limit cycles of a class of generalized Liénard polynomial equations / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Makhlouf, Ammar (University of Annaba (Algeria). Department of Mathematics)
We prove that the generalized Liénard polynomial differential system x'=y^2p-1, y'=-x^2q-1 - f(x) y^2n-1, where p, q, and n are positive integers; is a small parameter; and f(x) is a polynomial of degree m which can have [m/2] limit cycles, where [x] is the integer part function of x.
2015 - 10.1007/s10883-014-9253-4
Journal of Dynamical and Control Systems, Vol. 21 (2015) , p. 189-192  

¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.