Dipòsit Digital de Documents de la UAB 4 registres trobats  La cerca s'ha fet en 0.02 segons. 
1.
10 p, 567.6 KB On the Bifurcation of Limit Cycles Due to Polynomial Perturbations of Hamiltonian Centers / Colak, Ilker (Drexel University (Texas). Department of Mathematics) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Valls, Clàudia (Universidade de Lisboa. Departamento de Matemàtica)
We study the number of limit cycles bifurcating from the peri- od annulus of a real planar polynomial Hamiltonian ordinary differential system with a center at the origin when it is perturbed in the class of polynomial vector fields of a given degree.
2017 - 10.1007/s00009-017-0857-2
Mediterranean Journal of Mathematics, 2017  
2.
11 p, 650.3 KB Global dynamics of the Kummer-Schwarz differential equation / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Vidal, Claudio (Universidad del Bio Bio(Chile). Departamento de Matemática)
This paper studies the Kummer–Schwarz differential equation 2 ˙x. . . x −3¨x2 = 0 which is of special interest due to its relationship with the Schwarzian derivative. This differential equation is transformed into a first order differential system in R3, and we provide a complete description of its global dynamics adding the infinity.
2014 - 10.1007/s00009-013-0299-4
Mediterranean Journal of Mathematics, Vol. 11 (2014) , p. 477-486  
3.
11 p, 683.1 KB Generalized Weierstrass integrability of the Abel differential equations / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Valls, Clàudia (Universidade Técnica de Lisboa. Departamento de Matemática)
We study the Abel differential equations that admits either a generalized Weierstrass first integral or a generalized Weierstrass inverse integrating factor.
2013 - 10.1007/s00009-013-0266-0
Mediterranean Journal of Mathematics, Vol. 10 Núm. 4 (2013) , p. 1749-1760  
4.
9 p, 582.9 KB A priori L2-error estimates for approximations of functions on compact manifolds / Marín Pérez, David (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Nicolau i Reig, Marcel (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Given a { mathcal{C}^{2}} -function f on a compact riemannian manifold (X,g) we give a set of frequencies { L=L_{f}(varepsilon)} depending on a small parameter { varepsilon > 0} such that the relative L2-error { frac{f-f^{L} }{f}} is bounded above by { varepsilon}, where fL denotes the L-partial sum of the Fourier series f with respect to an orthonormal basis of L2(X) constituted by eigenfunctions of the Laplacian operator Δ associated to the metric g.
2015 - 10.1007/s00009-014-0393-2
Mediterranean journal of mathematics, Vol. 12, no. 1 (Feb. 2015) , p. 51-62  

Us interessa rebre alertes sobre nous resultats d'aquesta cerca?
Definiu una alerta personal via correu electrònic o subscribiu-vos al canal RSS.