Depósito Digital de Documentos de la UAB Encontrados 7 registros  La búsqueda tardó 0.01 segundos. 
1.
12 p, 443.2 KB Hjelmslev quadrilateral central configurations / Álvarez-Ramírez, Martha (Universidad Autónoma Metropolitana (Iztapalapa, Mèxic). Departamento de Matemáticas) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. Using mutual distances as coordinates, we show that any four-body central configuration forming a Hjelmslev quadrilateral must be a right kite configuration.
2019 - 10.1016/j.physleta.2018.08.034
Physics Letters. A, Vol. 383, Issues 2-3 (January 2019) , p. 103-109  
2.
11 p, 580.6 KB Local analytic first integrals of planar analytic differential systems / Colak, Ilker (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Valls, Clàudia 1973- (Universidade Técnica de Lisboa. Departamento de Matemática)
We study the existence of local analytic first integrals of a class of analytic differential systems in the plane, obtained from the Chua's system studied in [6, 7, 11]. The method used can be applied to other analytic differential systems.
2013 - 10.1016/j.physleta.2013.03.001
Physics Letters. A, Vol. 377 Núm. 15 (2013) , p. 1065-1069  
3.
6 p, 448.6 KB Periodic orbits and their stability in the Rössler prototype-4 system / García, Isaac A. (Universitat de Lleida. Departament de Matemàtica) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Maza, Susanna (Universitat de Lleida. Departament de Matemàtica)
2012 - 10.1016/j.physleta.2012.05.035
Physics Letters. A, Vol. 376 (2012) , p. 2234-2237  
4.
8 p, 371.9 KB Limit cycles for a class of second order differential equations / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pérez-Chavela, Ernesto (UAM-Iztapalapa(México). Departamento de Matemáticas)
We study the limit cycles of a wide class of second order differential equations, which can be seen as a particular perturbation of the harmonic oscillator. In particular, by choosing adequately the perturbed function we show, using the averaging theory, that it is possible to obtain as many limit cycles as we want.
2011 - 10.1016/j.physleta.2011.01.011
Physics Letters. A, Vol. 375 (2011) , p. 1080-1083  
5.
9 p, 309.3 KB Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree -2 / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Mahdi, Adam (University of North Carolina at Charlotte. Mathematics Department) ; Valls, Clàudia 1973- (Universidade Técnica de Lisboa. Departamento de Matemática)
We characterize the analytic integrability of Hamiltonian systems with Hamiltonian H = 1/ 2 2∑ i=1 p 2 i + V (q1, q2), having homogeneous potential V (q1, q2) of degree −2.
2011 - 10.1016/j.physleta.2011.03.042
Physics Letters. A, Vol. 375 (2011) , p. 1845-1849  
6.
4 p, 255.2 KB Centers on center manifolds in the Lu system / Mahdi, Adam (University of North Carolina at Charlotte. Mathematics Department) ; Pessoa, Claudio (Universidade Estadual Paulista(Brazil)) ; Shafer, Douglas S. (AGH University of Science and Technology(Poland). Faculty of Applied Mathematics)
We confirm a conjecture of Mello and Coelho [Physics Letters A 373 (2009) 1116-1120] concerning the existence of centers on local center manifolds at equilibria of the Lü system of differential equations on R3. [...]
2011 - 10.1016/j.physleta.2011.08.022
Physics Letters. A, Vol. 375 (2011) , p. 3509-3511  
7.
9 p, 770.9 KB Analytic integrability of Hamiltonian systems with exceptional potentials / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Valls, Clàudia 1973- (Universidade Técnica de Lisboa. Departamento de Matemática)
We study the existence of analytic first integrals of the complex Hamiltonian systems of the form H = 1 2 ∑ 2 i=1 p 2 i + Vl(q1, q2) with the homogeneous polynomial potential Vl(q1, q2) = α(q2 − iq1) L (q2 + iq1) k−l , l = 0, . [...]
2015 - 10.1016/j.physleta.2015.07.034
Physics Letters. A, Vol. 379 (2015) , p. 2295-2299  

¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.