Depósito Digital de Documentos de la UAB Encontrados 4 registros  La búsqueda tardó 0.01 segundos. 
1.
19 p, 403.2 KB On Bregman-type distances for convex functions and maximally monotone operators / Burachik, Regina S. (University of South Australia. School of Information Technology and Mathematical Sciences) ; Martínez Legaz, Juan Enrique (Universitat Autònoma de Barcelona. Departament d'Economia i d'Història Econòmica)
Given two point to set operators, one of which is maximally monotone, we introduce a new distance in their graphs. This new concept reduces to the classical Bregman distance when both operators are the gradient of a convex function. [...]
2018 - 10.1007/s11228-017-0443-6
Set-Valued and Variational Analysis, Vol. 26, Núm. 2 (2018) , p. 369-384  
2.
11 p, 351.0 KB Weakly Motzkin Predecomposable Sets / Martínez Legaz, Juan Enrique (Universitat Autònoma de Barcelona. Departament d'Economia i d'Història Econòmica) ; Todorov, M. I. (Universidad de las Américas)
We introduce and study the class of weakly Motzkin predecomposable sets, which are those sets in ℝ n that can be expressed as the Minkowski sum of a bounded convex set and a convex cone, none of them being necessarily closed. [...]
2017 - 10.1007/s11228-017-0420-0
Set-Valued and Variational Analysis, Vol. 25, Núm. 3 (September 2017) , p.507-516  
3.
10 p, 1022.6 KB Some conditions for maximal monotonicity of bifunctions / Hadjisavvas, Nicolas (King Fahd University of Petroleum and Minerals) ; Jacinto, Flavia M.O. (Universidade Federal do Amazonas) ; Martínez Legaz, Juan Enrique (Universitat Autònoma de Barcelona. Departament d'Economia i d'Història Econòmica)
We present necessary and sufficient conditions for a monotone bifunction to be maximally monotone, based on a recent characterization of maximally monotone operators. These conditions state the existence of solutions to equilibrium problems obtained by perturbing the defining bifunction in a suitable way.
2016 - 10.1007/s11228-015-0343-6
Set-Valued and Variational Analysis, Vol. 24, Núm. 2 (June 2016) , p. 323-332  
4.
24 p, 473.9 KB An additive subfamily of enlargements of a maximally monotone operator / Burachik, R. (University of South Australia. School of Information Technology and Mathematical Sciences) ; Martínez Legaz, Juan Enrique (Universitat Autònoma de Barcelona. Departament d'Economia i d'Història Econòmica) ; Rezaie, M. (University of Isfahan) ; Théra, M. (Université de Limoges. Laboratoire XLIM)
We introduce a subfamily of additive enlargements of a maximally monotone operator. Our definition is inspired by the early work of Simon Fitzpatrick. These enlargements constitute a subfamily of the family of enlargements introduced by Svaiter. [...]
2015 - 10.1007/s11228-015-0340-9
Set-Valued and Variational Analysis, Vol. 23, Núm. 4 (December 2015) , p. 643–665 2015  

¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.