Depósito Digital de Documentos de la UAB Encontrados 6 registros  La búsqueda tardó 0.01 segundos. 
1.
20 p, 1.0 MB Phase portraits of Bernoulli quadratic polynomial differential systems / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pereira, Weber F. (Universidade Estadual Paulista. Departamento de Matemática (Brasil)) ; Pessoa, Claudio (Universidade Estadual Paulista. Departamento de Matemática (Brasil))
In this paper we study a new class of quadratic polynomial differential systems. We classify all global phase portraits in the Poincaré disk of Bernoulli quadratic polynomial differential systems in R2.
2020
Electronic journal of differential equations, Vol. 2020, Issue 48 (2020) , p. 1-19
2 documentos
2.
23 p, 542.3 KB Piecewise smooth dynamical systems: Persistence of periodic solutions and normal forms / Gouveia, Marcio R. A. (IBILCE-UNESP(Brazil). Departamento de Matemática) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Novaes, Douglas D. (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pessoa, Claudio (IBILCE-UNESP(Brazil). Departamento de Matemática)
We consider an n-dimensional piecewise smooth vector field with two zones separated by a hyperplane \Sigma which admits an invariant hyperplane \Omega transversal to \Sigma containing a period annulus A fulfilled by crossing periodic solutions. [...]
2016 - 10.1016/j.jde.2015.12.034
Journal of differential equations, Vol. 260 (2016) , p. 6108-6129  
3.
18 p, 411.1 KB Piecewise linear perturbations of a linear center / Buzzi, Claudio (Universidade Estadual Paulista(Brazil). Departamento de Matemática) ; Torregrosa, Joan (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pessoa, Claudio (Universidade Estadual Paulista(Brazil). Departamento de Matemática)
This paper is mainly devoted to study the limit cycles that can bifurcate from a linear center using a piecewise linear perturbation in two zones. We consider the case when the two zones are separated by a straight line Σ and the singular point of the unperturbed system is in Σ. [...]
2013 - 10.3934/dcds.2013.33.3915
Discrete and continuous dynamical systems. Series A, Vol. 33 Núm. 9 (2013) , p. 3915-3936  
4.
4 p, 255.2 KB Centers on center manifolds in the Lu system / Mahdi, Adam (University of North Carolina at Charlotte. Mathematics Department) ; Pessoa, Claudio (Universidade Estadual Paulista(Brazil)) ; Shafer, Douglas S. (AGH University of Science and Technology(Poland). Faculty of Applied Mathematics)
We confirm a conjecture of Mello and Coelho [Physics Letters A 373 (2009) 1116-1120] concerning the existence of centers on local center manifolds at equilibria of the Lü system of differential equations on R3. [...]
2011 - 10.1016/j.physleta.2011.08.022
Physics Letters. A, Vol. 375 (2011) , p. 3509-3511  
5.
12 p, 312.6 KB The Hopf bifurcation in the Shimizu-Morioka system / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Pessoa, Claudio (Universidade Estadual Paulista. Departamento de Matemática)
We study the local Hopf bifurcations of codimension one and two which occur in the Shimizu-Morioka system. This system is a simplified model proposed for studying the dynamics of the well known Lorenz system for large Rayleigh numbers. [...]
2015 - 10.1007/s11071-014-1805-3
Nonlinear Dynamics, Vol. 79 (2015) , p. 2197-2205  
6.
24 p, 265.5 KB Homogeneous polynomial vector fields of degree 2 on the 2-dimensional sphere / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Gomes Pessoa, Claudio (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Let X be a homogeneous polynomial vector field of degree 2 on S2 having finitely many invariant circles. Then, we prove that each invariant circle is a great circle of S2, and at most there are two invariant circles. [...]
2006
Extracta mathematicae, Vol. 21, Núm. 2 (2006) , p. 167-190  

¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.