Depósito Digital de Documentos de la UAB Encontrados 17 registros  1 - 10siguiente  ir al registro: La búsqueda tardó 0.03 segundos. 
1.
25 p, 331.3 KB Spatial convex but non-strictly convex double-pyramidal central configurations of the (2n+ 2)-body problem / Corbera Subirana, Montserrat (Universitat de Vic - Universitat Central de Catalunya. Departament de Tecnologies Digitals i de la Informació) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
A configuration of the N bodies is convex if the convex hull of the positions of all the bodies in R³ does not contain in its interior any of these bodies. And a configuration is strictly convex if the convex hull of every subset of the N bodies is convex. [...]
2019 - 10.1007/s10884-019-09798-3
Journal of dynamics and differential equations, (September 2019)  
2.
22 p, 801.7 KB Centers and isochronous centers for two classes of generalized seventh and ninth systems / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Valls, Clàudia 1973- (Instituto Superior Técnico. Departamento de Matemática (Portugal))
We classify new classes of centers and of isochronous centers for polynomial differential systems in R2 of arbitrary odd degree d ≥ 7 that in complex notation z = x + iy can be written as z˙=(λ+i)z+(zz)d−7−2j/2 (Az5+jz2+j+Bz4+jz3+j+Cz3+jz4+j+Dz7+2j), where j is either 0 or 1, λ ∈ R and A,B,C ∈ C. [...]
2010 - 10.1007/s10884-010-9175-0
Journal of dynamics and differential equations, Vol. 22, Issue 4 (December 2010) , p. 657-675  
3.
16 p, 2.3 MB Limit cycles of piecewise smooth differential equations on two dimensional torus / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Miranda Martins, Ricardo (Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica) ; Tonon, Durval José (Universidade Federal de Goiás. Instituto de Matemática e Estatística)
In this paper we study the limit cycles of some classes of piecewise smooth vector fields defined in the two dimensional torus. The piecewise smooth vector fields that we consider are composed by linear, Ricatti with constant coefficients and perturbations of these one, which are given in (3). [...]
2018 - 10.1007/s10884-017-9584-4
Journal of dynamics and differential equations, Vol. 30, Issue 3 (September 2018) , p. 1011-1027  
4.
On strictly convex central configurations of the 2n-body problem / Barrabés Vera, Esther (Universitat de Girona. Escola Politècnica Superior) ; Cors Iglesias, Josep Maria (Universitat Politècnica de Catalunya. Escola Politècnica Superior d'Enginyeria de Manresa)
We consider planar central configurations of the Newtonian 2n-body problem consisting in two twisted regular n-gons of equal masses. We prove the conjecture that for n≥ 5 all convex central configurations of two twisted regular n-gons are strictly convex.
2019 - 10.1007/s10884-018-9708-5
Journal of dynamics and differential equations, Vol. 31, Issue 4 (December 2019) , p. 2293-2304  
5.
The Markus-Yamabe conjecture does not hold for discontinuous piecewise linear differential systems separated by one straight line / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Menezes, Lucyjane de A.S. (Universidade Federal de Goiás. Instituto de Matemática e Estatística (Brazil))
The Markus-Yamabe conjecture is a conjecture on global asymptotic stability. The conjecture states that if a differentiable system x˙ = f(x) has a singularity and the Jacobian matrix Df(x) has everywhere eigenvalues with negative real part, then the singularity is a global attractor. [...]
2020 - 10.1007/s10884-020-09825-8
Journal of dynamics and differential equations, 2020  
6.
On centered co-circular central configurations of the n-body problem / Corbera Subirana, Montserrat (Universitat de Vic - Universitat Central de Catalunya) ; Valls, Clàudia 1973- (Universidade de Lisboa. Instituto Superior Técnico. Departamento de Matemàtica)
We study the co-circular central configurations of the n-body problem for which the center of mass and the center of the common circle coincide. In particular, we prove that there are no central configurations of this type with all the masses equal except one. [...]
2019 - 10.1007/s10884-018-9699-2
Journal of dynamics and differential equations, Vol. 31, Issue 4 (December 2019) , p. 2053-2060  
7.
The period function of Hamiltonian systems with separable variables / Villadelprat, Jordi (Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques) ; Zhang, Xiang (Shanghai Jiao Tong University. School of Mathematical Sciences (China))
In this paper we study the period function of those planar Hamiltonian differential systems for which the Hamiltonian function H(x, y) has separable variables, i. e. , it can be written as H(x, y) = F1(x) + F2(y). [...]
2020 - 10.1007/s10884-019-09759-w
Journal of dynamics and differential equations, Vol. 32, Issue 2 (June 2020) , p. 741-767  
8.
10 p, 418.4 KB A special family of stacked central configurations : lagrange plus euler in one / Cornelio, J. Lino (Universidad Juárez Autónoma de Tabasco. División Académica de Ciencias Básicas) ; Álvarez-Ramírez, Martha (Universidad Autónoma Metropolitana - Iztapalapa. Departamento de Matemáticas (México)) ; Cors Iglesias, Josep Maria (Universitat Politècnica de Catalunya. Departament de Matemàtiques)
We show the existence of a family of stacked central configurations in the planar five-body problem with a special property. Three bodies m1 , m2 and m3 , ordered from left to right, are collinear and form an Euler central configuration, and the other two bodies m4 and m5 , together with m2 are at the vertices of an equilateral triangle and form a Lagrange central configuration.
2019 - 10.1007/s10884-018-9647-1
Journal of dynamics and differential equations, Vol. 31, Issue 2 (June 2019) , p. 711-718  
9.
34 p, 632.0 KB Asymptotic Development of an Integral Operator and Boundedness of the Criticality of Potential Centers / Rojas, David (Universitat de Girona. Departament d'Informàtica, Matemàtica Aplicada i Estadística)
We study the asymptotic development at infinity of an integral operator. We use this development to give sufficient conditions to upper bound the number of critical periodic orbits that bifurcate from the outer boundary of the period function of planar potential centers. [...]
2019 - 10.1007/s10884-019-09753-2
Journal of dynamics and differential equations, (April 2019)  
10.
10 p, 362.5 KB A proof of Bertrand's theorem using the theory of isochronous potentials / Ortega, Rafael (Universidad de Granada. Departamento de Matemática Aplicada) ; Rojas, David (Universidad de Granada. Departamento de Matemática Aplicada)
We give an alternative proof for the celebrated Bertrand's theorem as a corollary of the isochronicity of a certain family of centers.
2018 - 10.1007/s10884-018-9676-9
Journal of dynamics and differential equations, Vol. 31, Issue 4 (December 2019) , p. 2017-2028  

Depósito Digital de Documentos de la UAB : Encontrados 17 registros   1 - 10siguiente  ir al registro:
¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.