Results overview: Found 3 records in 0.02 seconds.
Articles, 3 records found
Articles 3 records found  
1.
Z₂-equivariant linear type bi-center cubic polynomial Hamiltonian vector fields / Chen, Ting (Guangdong University of Finance and Economics. School of Statistics and Mathematics (China)) ; Li, Shimin (Guangdong University of Finance and Economics. School of Mathematics and Statistics (China)) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We study the global dynamical behavior of Z₂-equivariant cubic Hamiltonian vector fields with a linear type bi-center at (±1,0). By using a series of symbolic computation tools, we obtain all possible phase portraits of these Z₂-equivariant Hamiltonian systems.
2020 - 10.1016/j.jde.2019.12.020
Journal of differential equations, Vol. 269, Issue 1 (June 2020) , p. 832-861  
2.
43 p, 856.0 KB Bifurcation diagrams and global phase portraits for some hamiltonian systems with rational potentials / Chen, Ting (Hunan University. College of Mathematics and Econometrics.) ; Llibre, Jaume (Universitat Autonoma de Barcelona. Departament de Matemàtiques)
In this paper, we study the global dynamical behavior of the Hamiltonian system ẋ = Hy(x,y), ẏ=−Hx(x,y) with the rational potential Hamiltonian H(x,y) = y2/2 + P(x)/Q(y), where P(x) and Q(y) are polynomials of degree 1 or 2. [...]
2018 - 10.1142/S0218127418501687
International Journal of Bifurcation and Chaos, Vol. 28, Issue 13 (December 2018) , art. 1850168  
3.
7 p, 289.4 KB Limit cycles of a second-order differential equation / Chen, Ting (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
We provide an upper for the maximum number of limit cycles bifurcating from the periodic solutions of x=0, when we perturb this system as follows \ (1 ^m )Q(x,y) x=0, \] where >0 is a small parameter, m is an arbitrary non-negative integer, Q(x,y) is a polynomial of degree n and =(y/x). [...]
2019 - 10.1016/j.aml.2018.08.015
Applied mathematics letters, Vol. 88 (2019) , p. 111-117  

See also: similar author names
1 Chen, T.
2 Chen, T.W.
1 Chen, Tao
1 Chen, Tianhu
1 Chen, Tzu Yiu
1 Chen, Tzu-Yiu,
Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.