Results overview: Found 5 records in 0.02 seconds.
Articles, 4 records found
Research literature, 1 records found
Articles 4 records found  
36 p, 330.8 KB Distributional inequalities for non harmonic functions / González, María J. (Universidad de Cádiz. Departamento de Matemáticas) ; Koskela, P. (University of Jyväskylä. Department of Mathematics) ; González Llorente, José (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Nicolau, Artur (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
The relationship between the non-tangential maximal function and convenient versions of the area function of a general (non harmonic) function in a upper-half space are studied.
2003 - 10.1512/iumj.2003.52.2140
Indiana University mathematics journal, Vol. 52, No. 1 (2003) , p. 191-226  
20 p, 396.0 KB Generalized quasidisks and conformality / Guo, Chang-Yu ; Koskela, Pekka ; Takkinen, Juhani
We introduce a weaker variant of the concept of linear local connectivity, sufficient to guarantee the extendability of a conformal map f : D → Ω to the entire plane as a homeomorphism of locally exponentially integrable distortion. [...]
2014 - 10.5565/PUBLMAT_58114_09
Publicacions matemàtiques, Vol. 58, Núm. 1 (2014) , p. 193-212  
22 p, 196.7 KB Subelliptic Poincaré inequalities: the case p < 1 / Buckley, S. ; Koskela, P. ; Lu, G.
We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying Carnot-Carathéodory metric. [...]
1995 - 10.5565/PUBLMAT_39295_08
Publicacions Matemàtiques, Vol. 39, Núm. 2 (1995) , p. 313-334  
20 p, 219.2 KB Mappings of finite distortion: formation of cusps / Koskela, Pekka ; Takkinen, Juhani
In this paper we consider the extensions of quasiconformal mappings f : B → Ωs to the whole plane, when the domain Ωs is a domain with a cusp of degree s > 0 and thus not an quasidisc. While these mappings do not have quasiconformal extensions, they may have extensions that are homeomorphic mappings of finite distortion with an exponentially integrable distortion, but in such a case R 2B exp(λK(x)) dx = ∞ for all λ > 1/s. [...]
2007 - 10.5565/PUBLMAT_51107_10
Publicacions Matemàtiques, V. 51 n. 1 (2007) p. 223-242  

Research literature 1 records found  
17 p, 375.0 KB Gehring-Hayman theorem for conformal deformations / Koskela, Pekka ; Lammi, Päivi ; Universitat Autònoma de Barcelona. Centre de Recerca Matemàtica
We study conformal deformations of a uniform space that satisfies the Ahlfors Q-regularity condition on balls of Whitney type. We verify the Gehring–Hayman Theorem by using a Whitney Covering of the space.
Centre de Recerca Matemàtica 2009 (Prepublicacions del Centre de Recerca Matemàtica ; 915)  

See also: similar author names
4 Koskela, Pekka
4 Koskela, Pekka
Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.