Resultats globals: 12 registres trobats en 0.02 segons.
Articles, 12 registres trobats
 Articles 12 registres trobats  1 - 10  anar al registre:
1.
 Invariant conditions for phase portraits of quadratic systems with complex conjugate invariant lines meeting at a finite point / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques (France)) ; Vulpe, Nicolae (Vladimir Andrunakievichi Institute of Mathematics and Computer Science (Moldova)) The goal of this article is to give invariant necessary and sufficient conditions for a quadratic system, presented in whatever normal form, to have anyone of 17 out of the 20 phase portraits of the family of quadratic systems with two complex conjugate invariant lines intersecting at a finite real point. [...] 2020 - 10.1007/s12215-020-00541-2 Rendiconti del Circolo Matematico di Palermo, (July 2020)
2.
 129 p, 4.9 MB Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas / Oliveira, Regilene D. S. (Universidade de São Paulo. Instituto De Ciências Matemáticas e de Computação) ; Rezende, Alex C. (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques) ; Vulpe, Nicolae (Academy of Sciences of Moldova. Institute of Mathematics and Computer Science) Let QSH be the whole class of non-degenerate planar quadratic diﬀerential systems possessing at least one invariant hyperbola. We classify this family of systems, modulo the action of the group of real aﬃne transformations and time rescaling, according to their geometric properties encoded in the conﬁgurations of invariant hyperbolas and invariant straight lines which these systems possess. [...] 2017 Electronic journal of differential equations, Vol. 2017, Issue 295 (2017) , p. 1-122 2 documents
3.
 Global topological configurations of singularities for the whole family of quadratic differential systems / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques) ; Vulpe, Nicolae (Academy of Science of Moldova. Institute of Mathematics and Computer Science) In Artés et al. (Geometric configurations of singularities of planar polynomial differential systems. A global classification in the quadratic case. Birkhäuser, Basel, 2019) the authors proved that there are 1765 different global geometrical configurations of singularities of quadratic differential systems in the plane. [...] 2020 - 10.1007/s12346-020-00372-7 Qualitative Theory of Dynamical Systems, Vol. 19, Issue 1 (April 2020) , art. 51
4.
 43 p, 1.7 MB Geometric configurations of singularities for quadratic differential systems with three distinct real simple finite singularities / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques) ; Vulpe, Nicolae (Academy of Science of Moldova. Institute of Mathematics and Computer Science) In this work we classify, with respect to the geometric equivalence relation, the global configurations of singularities, finite and infinite, of quadratic differential systems possessing exactly three distinct finite simple singularities. [...] 2013 - 10.1007/s11784-014-0175-2 Journal of fixed point theory and applications, Vol. 14 Núm. 2 (2013) , p. 555-618
5.
 62 p, 2.4 MB Geometric configurations of singularities for quadratic differential systems with total finite multiplicity m_f=2 / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques) ; Vulpe, Nicolae (Academy of Science of Moldova. Institute of Mathematics and Computer Science) In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [3]. [...] 2014 Electronic journal of differential equations, Vol. 2014 Núm. 159 (2014) , p. 1-79
6.
 35 p, 1.6 MB Global configurations of singularities for quadratic differential systems with total finite multiplicity three and at most two real singularities / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques) ; Vulpe, Nicolae (Academy of Science of Moldova. Institute of Mathematics and Computer Science) In this work we consider the problem of classifying all configurations of singularities, finite and infinite, of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. [...] 2014 - 10.1007/s12346-014-0119-7 Qualitative Theory of Dynamical Systems, Vol. 13 (2014) , p. 305-351
7.
 36 p, 1.5 MB Global configurations of singularities for quadratic differential systems with exactly two finite singularities of total multiplicity four / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Rezende, Alex C. (Universidade de São Paulo) ; Schlomiuk, Dana (Université de Montréal) ; Vulpe, Nicolae (Academy of Science of Moldova) In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. [...] 2014 - 10.14232/ejqtde.2014.1.60 Electronic Journal of Qualitative Theory of Differential Equations, Vol. 60 (2014) , p. 1-43
8.
 40 p, 1.5 MB Geometric configurations of singularities for quadratic differential systems with total finite multiplicity lower than 2 / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques) ; Vulpe, Nicolae (Academy of Science of Moldova. Institute of Mathematics and Computer Science) In [3] we classified globally the configurations of singularities at infinity of quadratic differential systems, with respect to the geometric equivalence relation. The global classification of configurations of finite singularities was done in [2] modulo the coarser topological equivalence relation for which no distinctions are made between a focus and a node and neither are they made between a strong and a weak focus or between foci of different orders. [...] 2013 Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica., Vol. 71 Núm. 1 (2013) , p. 72-124
9.
 14 p, 492.6 KB On the limit cycles bifurcating from an ellipse of a quadratic center / Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal(Canada). Département de Mathématiques et Statistique) Consider the class of all quadratic centers whose period annulus has a periodic solution whose phase curve is an ellipse E. The period annulus of any of such quadratic centers has cyclicity at least one, and this one is due to a family of algebraic limit cycles(formed by ellipses) bifurcating from the ellipse E. [...] 2015 - 10.3934/dcds.2015.35.1091 Discrete and continuous dynamical systems. Series A, Vol. 35 Núm. 3 (2015) , p. 1091-1102
10.
 53 p, 2.7 MB From topological to geometric equivalence in the classification of singularities at infinity for quadratic vector fields / Artés, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques) ; Schlomiuk, Dana (Université de Montréal. Département de Mathématiques et de Statistiques) ; Vulpe, Nicolae (Academy of Science of Moldova. Institute of Mathematics and Computer Science) In the topological classification of phase portraits no distinctions are made between a focus and a node and neither are they made between a strong and a weak focus or between foci of different orders. [...] 2015 - 10.1216/RMJ-2015-45-1-29 The Rocky Mountain Journal of Mathematics, Vol. 45 Núm. 1 (2015) , p. 29-113

Articles : 12 registres trobats   1 - 10  anar al registre:
Vegeu també: autors amb noms similars
1 Schlomiuk, D.
13 Schlomiuk, Dana
Us interessa rebre alertes sobre nous resultats d'aquesta cerca?
Definiu una alerta personal via correu electrònic o subscribiu-vos al canal RSS.