Web of Science: 5 citations, Scopus: 5 citations, Google Scholar: citations,
Stochastic multi-scale models of competition within heterogeneous cellular populations : Simulation methods and mean-field analysis
Cruz Moreno, Roberto de la (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Guerrero, Pilar (University College London. Department of Mathematics)
Spill, Fabian (Boston University. Department of Biomedical Engineering)
Alarcón Cor, Tomás (Centre de Recerca Matemàtica)

Date: 2016
Abstract: We propose a modelling framework to analyse the stochastic behaviour of heterogeneous, multi-scale cellular populations. We illustrate our methodology with a particular example in which we study a population with an oxygen-regulated proliferation rate. Our formulation is based on an age-dependent stochastic process. Cells within the population are characterised by their age (i. e. time elapsed since they were born). The age-dependent (oxygen-regulated) birth rate is given by a stochastic model of oxygen-dependent cell cycle progression. Once the birth rate is determined, we formulate an age-dependent birth-and-death process, which dictates the time evolution of the cell population. The population is under a feedback loop which controls its steady state size (carrying capacity): cells consume oxygen which in turn fuels cell proliferation. We show that our stochastic model of cell cycle progression allows for heterogeneity within the cell population induced by stochastic effects. Such heterogeneous behaviour is reflected in variations in the proliferation rate. Within this set-up, we have established three main results. First, we have shown that the age to the G1/S transition, which essentially determines the birth rate, exhibits a remarkably simple scaling behaviour. Besides the fact that this simple behaviour emerges from a rather complex model, this allows for a huge simplification of our numerical methodology. A further result is the observation that heterogeneous populations undergo an internal process of quasi-neutral competition. Finally, we investigated the effects of cell-cycle-phase dependent therapies (such as radiation therapy) on heterogeneous populations. In particular, we have studied the case in which the population contains a quiescent sub-population. Our mean-field analysis and numerical simulations confirm that, if the survival fraction of the therapy is too high, rescue of the quiescent population occurs. This gives rise to emergence of resistance to therapy since the rescued population is less sensitive to therapy.
Grants: Ministerio de Economía y Competitividad MTM2015-71509-C2-1-R
Ministerio de Economía y Competitividad MDM-2014-0445
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-1307
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Multi-scale modelling ; Stochastic population dynamics ; Cell cycle ; Radiotherapy ; Scaling laws
Published in: Journal of theoretical biology, Vol. 407 (Oct. 2016) , p. 161-183, ISSN 1095-8541

DOI: 10.1016/j.jtbi.2016.07.028
PMID: 27457092


23 p, 2.3 MB

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2018-02-07, last modified 2022-02-06



   Favorit i Compartir