Web of Science: 177 citations, Scopus: 182 citations, Google Scholar: citations,
Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering
Tang, PengYi (Institut Català de Nanociència i Nanotecnologia)
Xie, Haibing (Institut de Recerca en Energia de Catalunya)
Ros, Carles (Institut de Recerca en Energia de Catalunya)
Han, Lijuan (Institut Català d'Investigació Química)
Biset-Peiró, Martí (Institut de Recerca en Energia de Catalunya)
He, Yong-Min (Lanzhou University. School of Physical Science and Technology)
Kramer, W. (California Institute of Technology. Division of Chemistry and Chemical Engineering)
Pérez-Rodríguez, Alejandro (Institut de Recerca en Energia de Catalunya)
Saucedo, Edgardo (Institut de Recerca en Energia de Catalunya)
Galán-Mascarós, José Ramón (Institut Català d'Investigació Química)
Andreu, Teresa (Institut de Recerca en Energia de Catalunya)
Morante, Joan Ramon (Institut de Recerca en Energia de Catalunya)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)

Date: 2017
Abstract: The optimization of multiple interfaces in hematite (α-Fe₂O₃) based composites for photoelectrochemical water splitting to facilitate charge transport in the bulk is of paramount importance to obtain enhanced solar-to-fuel efficiency. Herein, we report the fabrication of ITO/Fe₂O₃/Fe₂TiO₅/FeNiOOH multi-layer nanowires and a series of systematic experiments designed to elucidate the mechanism underlying the interfacial coupling effect of the quaternary hematite composite. The hierarchical ITO/Fe₂O₃/Fe₂TiO₅/FeNiOOH nanowires display photocurrents that are more than an order of magnitude greater than those of pristine Fe₂O₃ nanowires (from 0. 205 mAcm⁻² to 2. 2 mAcm⁻² at 1. 23 V vs. RHE and 1 Sun), and higher than those of most of the recently reported state-of-the-art hematite composites. Structural, compositional and electrochemical investigations disclose that the surface states (SS) are finely regulated via the atomic addition of an Fe₂TiO₅ layer and FeNiOOH nanodots, while the upgrading of back contact conductivity and charge donor densities originate from the epitaxial relationship and enhanced Sn doping contributed from the ITO underlayer. We attribute the superior water oxidation performance to the interfacial coupling effect of the ITO underlayer (Sn doping and back contact conductivity promoter), the atomic level Fe₂TiO₅ coating (Ti doping, surface state density and energy level modulation) and the FeNiOOH nanodot electrocatalyst (regulating surface state energy level). Our work suggests an effective pathway for rational designing of highly active and cost-effective integrated photoanodes for photoelectrochemical water splitting.
Grants: Ministerio de Economía y Competitividad ENE2016-80788-C5
Ministerio de Economía y Competitividad CTQ2015-71287-R
Ministerio de Economía y Competitividad MAT2014-59961-C2
Ministerio de Economía y Competitividad SEV-2013-0319
Ministerio de Economía y Competitividad SEV-2013-0295
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-1638
Agència de Gestió d'Ajuts Universitaris i de Recerca 2014/SGR-797
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Electrochemical investigations ; Epitaxial relationships ; Interfacial couplings ; Multilayer nanowires ; Photoelectrochemical water splitting ; Surface state density ; Surface-state energies ; Systematic experiment
Published in: Energy & environmental science, Vol. 10, Issue 10 (October 2017) , p. 2124-2136, ISSN 1754-5706

DOI: 10.1039/c7ee01475a


Postprint
13 p, 2.5 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2018-07-25, last modified 2023-11-10



   Favorit i Compartir