Web of Science: 10 citas, Scopus: 10 citas, Google Scholar: citas,
Quantifying thermal transport in buried semiconductor nanostructures : Via cross-sectional scanning thermal microscopy
Spièce, Jean (Lancaster University. Physics Department)
Evangeli, Charalambos (Lancaster University. Physics Department)
Robson, Alexander J. (Lancaster University. Physics Department)
Sachat, Alexandros el (Institut Català de Nanociència i Nanotecnologia)
Haenel, Linda (University of Stuttgart)
Alonso, M. Isabel (Institut de Ciència de Materials de Barcelona)
Garriga, Miquel (Institut de Ciència de Materials de Barcelona)
Robinson, Benjamin James (Lancaster University. Material Science Institute)
Oehme, Michael (University of Stuttgart)
Schulze, Jörg (University of Stuttgart)
Alzina, Francesc (Institut Català de Nanociència i Nanotecnologia)
Sotomayor Torres, Clivia (Institució Catalana de Recerca i Estudis Avançats)
Kolosov, Oleg Victor (Lancaster University. Material Science Institute)

Fecha: 2021
Resumen: Managing thermal transport in nanostructures became a major challenge in the development of active microelectronic, optoelectronic and thermoelectric devices, stalling the famous Moore's law of clock speed increase of microprocessors for more than a decade. To find the solution to this and linked problems, one needs to quantify the ability of these nanostructures to conduct heat with adequate precision, nanoscale resolution, and, essentially, for the internal layers buried in the 3D structure of modern semiconductor devices. Existing thermoreflectance measurements and "hot wire"3ω methods cannot be effectively used at lateral dimensions of a layer below a micrometre; moreover, they are sensitive mainly to the surface layers of a relatively high thickness of above 100 nm. Scanning thermal microscopy (SThM), while providing the required lateral resolution, provides mainly qualitative data of the layer conductance due to undefined tip-surface and interlayer contact resistances. In this study, we used cross-sectional SThM (xSThM), a new method combining scanning probe microscopy compatible Ar-ion beam exit nano-cross-sectioning (BEXP) and SThM, to quantify thermal conductance in complex multilayer nanostructures and to measure local thermal conductivity of oxide and semiconductor materials, such as SiO2, SiGex and GeSny. By using the new method that provides 10 nm thickness and few tens of nm lateral resolution, we pinpoint crystalline defects in SiGe/GeSn optoelectronic materials by measuring nanoscale thermal transport and quantifying thermal conductivity and interfacial thermal resistance in thin spin-on materials used in extreme ultraviolet lithography (eUV) fabrication processing. The new capability of xSThM demonstrated here for the first time is poised to provide vital insights into thermal transport in advanced nanoscale materials and devices.
Ayudas: European Commission 604668
European Commission 881603
Ministerio de Economía y Competitividad CEX2019-000917-S
Ministerio de Economía y Competitividad SEV-2017-0706
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-488
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-806
Derechos: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. Creative Commons
Lengua: Anglès
Documento: Article ; recerca ; Versió publicada
Materia: Cross-sectional scanning ; Interfacial thermal resistance ; Multilayer nanostructures ; Nanoscale thermal transport ; Opto-electronic materials ; Scanning thermal microscopy ; Semiconductor nanostructures ; Thermoreflectance measurement
Publicado en: Nanoscale, Vol. 13, Issue 24 (June 2021) , p. 10829-10836, ISSN 2040-3372

DOI: 10.1039/d0nr08768h


8 p, 1.4 MB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > Institut Català de Nanociència i Nanotecnologia (ICN2)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2021-07-28, última modificación el 2022-12-03



   Favorit i Compartir