Google Scholar: citations
Phase engineering of defective copper selenide toward robust lithium-sulfur batteries
Yang, Dawei (Universitat de Barcelona. Department d'Electrònica i Enginyeria Biomèdica)
Li, Mengyao (Institut de Recerca en Energia de Catalunya)
Zheng, Xuejiao (Nanjing Hydraulic Research Institute)
Han, Xu (Institut Català de Nanociència i Nanotecnologia)
Zhang, Chaoqi (Universitat de Barcelona. Departament d'Enginyeria Electrònica i Biomèdica)
Jacas Biendicho, Jordi (Institut de Recerca en Energia de Catalunya)
Llorca, Jordi (Universitat Politècnica de Catalunya. Departament d'Enginyeria Química)
Wang, Jiaao (The University of Texas at Austin. Oden Institute for Computational Engineering and Sciences)
Hao, Hongchang (The University of Texas at Austin. Texas Materials Institute)
Li, Junshan (Chengdu University. Institute of Advanced Study)
Henkelman, Graeme (The University of Texas at Austin. Oden Institute for Computational Engineering and Sciences)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Morante, Joan Ramon (Institut de Recerca en Energia de Catalunya)
Mitlin, David (The University of Texas at Austin. Texas Materials Institute)
Chou, Shulei (Wenzhou University. Institute for Carbon Neutralization)
Cabot, Andreu (Institució Catalana de Recerca i Estudis Avançats)

Additional title: Synergistically enhancement of electrochemical kinetics by phase engineering of defective copper selenide toward robust lithium-sulfur Batteries
Date: 2022
Abstract: The shuttling of soluble lithium polysulfides (LiPS) and the sluggish Li-S conversion kinetics are two main barriers toward the practical application of lithium-sulfur batteries (LSBs). Herein, we propose the addition of copper selenide nanoparticles at the cathode to trap LiPS and accelerate the Li-S reaction kinetics. Using both computational and experimental results, we demonstrate the crystal phase and concentration of copper vacancies to control the electronic structure of the copper selenide, its affinity toward LiPS chemisorption, and its electrical conductivity. The adjustment of the defect density also allows for tuning the electrochemically active sites for the catalytic conversion of polysulfide. The optimized S/Cu1. 8Se cathode efficiently promotes and stabilizes the sulfur electrochemistry, thus improving significantly the LSB performance, including an outstanding cyclability over 1000 cycles at 3 C with a capacity fading rate of just 0. 029% per cycle, a superb rate capability up to 5 C, and a high areal capacity of 6. 07 mAh cm-2 under high sulfur loading. Overall, the present work proposes a crystal phase and defect engineering strategy toward fast and durable sulfur electrochemistry, demonstrating great potential in developing practical LSBs.
Grants: European Commission 823717
Agencia Estatal de Investigación PID2020-116093RB-C43
Ministerio de Ciencia e Innovación RTI2018-093996-B-C31
Ministerio de Economía y Competitividad SEV-2017-0706
Ministerio de Ciencia e Innovación ENE2016-77798-C4-3-R
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-128
Note: Altres ajuts: IREC and ICN2 are both funded by the CERCA Program/Generalitat de Catalunya.
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Subject: Copper ; Electrochemical cells ; Electrodes ; Selenides ; Sulfu
Published in: ACS nano, Vol. 16, issue 7 (July 2022) , p. 11102-11114, ISSN 1936-086X

DOI: 10.1021/acsnano.2c03788


Preprint
38 p, 2.1 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2023-01-24, last modified 2023-04-21



   Favorit i Compartir