Google Scholar: citations
Electrochemical conversion of alcohols into acidic commodities on nickel sulfide nanoparticles
Li, Junshan (Chengdu University. Institute of Advanced Study)
Tian, Xi (Chengdu University. College of Food and Biological Engineering)
Wang, Xiang (Institució Catalana de Recerca i Estudis Avançats)
Zhang, Ting (Institut Català de Nanociència i Nanotecnologia)
Spadaro, Maria Chiara (Institut Català de Nanociència i Nanotecnologia)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Li, Luming (Chengdu University. College of Food and Biological Engineering)
Zuo, Yong (Institut de Recerca en Energia de Catalunya)
Cabot, Andreu (Institució Catalana de Recerca i Estudis Avançats)

Date: 2022
Abstract: The electrocatalytic oxidation of alcohols is a potentially cost-effective strategy for the synthesis of valuable chemicals at the anode while simultaneously generating hydrogen at the cathode. For this approach to become commercially viable, high-activity, low-cost, and stable catalysts need to be developed. Herein, we demonstrate an electrocatalyst based on earth-abundant nickel and sulfur elements. Experimental investigations reveal the produced NiS displays excellent electrocatalytic performance associated with a higher electrochemical surface area (ECSA) and the presence of sulfate ions on the formed NiOOH surface in basic media. The current densities reached for the oxidation of ethanol and methanol at 1. 6 V vs reversible hydrogen electrode (RHE) are up to 175. 5 and 145. 1 mA cm-2, respectively. At these high current densities, the Faradaic efficiency of methanol to formate conversion is 98% and that of ethanol to acetate is 81%. Density functional theory calculations demonstrate the presence of the generated sulfate groups to modify the electronic properties of the NiOOH surface, improving electroconductivity and electron transfer. Besides, calculations are used to determine the reaction energy barriers, revealing the dehydrogenation of ethoxy groups to be more favorable than that of methoxy on the catalyst surface, which explains the highest current densities obtained for ethanol oxidation.
Grants: Ministerio de Ciencia e Innovación PID2020-116093RB-C43
Ministerio de Ciencia e Innovación PID2019-105490RB-C32
Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-327
Ministerio de Economía y Competitividad SEV-2013-0295
Note: Altres ajuts: M.C.S. has received funding from the postdoctoral fellowship Juan de la Cierva from MICINN (IJCI-2019) and the Severo Ochoa programme. IREC and ICN2 are funded by the CERCA Programme/Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Autònoma de Barcelona Materials Science PhD program. This study was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and Generalitat de Catalunya.
Rights: Tots els drets reservats.
Language: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Subject: Alcohols ; Electrical properties ; Electrodes ; Ethanol ; Oxidation
Published in: Inorganic chemistry, Vol. 61, issue 34 (Aug. 2022) , p. 13433-13441, ISSN 1520-510X

DOI: 10.1021/acs.inorgchem.2c01695


Preprint
24 p, 3.9 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2023-01-24, last modified 2024-04-05



   Favorit i Compartir