Web of Science: 14 citations, Scopus: 14 citations, Google Scholar: citations
Thermal conductivity of epitaxially grown InP : experiment and simulation
Jaramillo Fernández, Juliana (Royal Institute of Technology KTH. Department of Material and Nano Physics)
Chávez Ángel, Emigdio (Institut Català de Nanociència i Nanotecnologia)
Sanatinia, Reza (Harvard University. John A. Paulson School of Engineering and Applied Sciences)
Kataria, Himanshu (IRnova AB)
Anand, Srinivasan (Royal Institute of Technology KTH. Department of Material and Nano Physics)
Lourdudoss, Sebastian (Royal Institute of Technology KTH. Department of Material and Nano Physics)
Sotomayor Torres, Clivia M. (Institut Català de Nanociència i Nanotecnologia)

Date: 2017
Abstract: The integration of III-V optoelectronic devices on silicon is confronted with the challenge of heat dissipation for reliable and stable operation. A thorough understanding and characterization of thermal transport is paramount for improved designs of, for example, viable III-V light sources on silicon. In this work, the thermal conductivity of heteroepitaxial laterally overgrown InP layers on silicon is experimentally investigated using microRaman thermometry. By examining InP mesa-like structures grown from trenches defined by a SiO mask, we found that the thermal conductivity decreases by about one third, compared to the bulk thermal conductivity of InP, with decreasing width from 400 to 250 nm. The high thermal conductivity of InP grown from 400 nm trenches was attributed to the lower defect density as the InP microcrystal becomes thicker. In this case, the thermal transport is dominated by phonon-phonon interactions as in a low defect-density monocrystalline bulk material, whereas for thinner InP layers grown from narrower trenches, the heat transfer is dominated by phonon scattering at the extended defects and InP/SiO interface. In addition to the nominally undoped sample, sulfur-doped (1 × 10 cm) InP grown on Si was also studied. For the narrower doped InP microcrystals, the thermal conductivity decreased by a factor of two compared to the bulk value. Sources of errors in the thermal conductivity measurements are discussed. The experimental temperature rise was successfully simulated by the heat diffusion equation using the FEM.
Grants: Ministerio de Economía y Competitividad FIS2015-70862-P
Ministerio de Economía y Competitividad CSD2010-00044
Ministerio de Economía y Competitividad SEV-2013-0295
Note: Altres ajuts: Catalan AGAUR
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Published in: CrystEngComm, Vol. 19, Issue 14 (February 2017) , p. 1879-1887, ISSN 1466-8033

DOI: 10.1039/c6ce02642g


10 p, 3.2 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2023-07-03, last modified 2023-07-13



   Favorit i Compartir