Google Scholar: citas
Selective Ethylene Glycol Oxidation to Formate on Nickel Selenide with Simultaneous Evolution of Hydrogen
Li, Junshan (Chengdu University)
Li, Luming (Chengdu University)
Ma, Xingyu (Southwest Minzu University)
Han, Xu (Institut Català de Nanociència i Nanotecnologia)
Xing, Congcong (Institut de Recerca en Energia de Catalunya)
Qi, Xueqiang (Institut de Recerca en Energia de Catalunya)
He, Ren (Institut de Recerca en Energia de Catalunya)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Pan, Huiyan (Nanyang Institute of Science and Technology)
Zhao, Jun (Hebei University of Science and Technology)
Deng, Jie (Chengdu University)
Zhang, Yu (Pennsylvania State University)
Yang, Yaoyue (Southwest Minzu University)
Cabot, Andreu (Institució Catalana de Recerca i Estudis Avançats)

Fecha: 2023
Resumen: There is an urgent need for cost-effective strategies to produce hydrogen from renewable net-zero carbon sources using renewable energies. In this context, the electrochemical hydrogen evolution reaction can be boosted by replacing the oxygen evolution reaction with the oxidation of small organic molecules, such as ethylene glycol (EG). EG is a particularly interesting organic liquid with two hydroxyl groups that can be transformed into a variety of C1 and C2 chemicals, depending on the catalyst and reaction conditions. Here, a catalyst is demonstrated for the selective EG oxidation reaction (EGOR) to formate on nickel selenide. The catalyst nanoparticle (NP) morphology and crystallographic phase are tuned to maximize its performance. The optimized NiS electrocatalyst requires just 1. 395 V to drive a current density of 50 mA cm −2 in 1 potassium hydroxide (KOH) and 1 EG. A combination of in situ electrochemical infrared absorption spectroscopy (IRAS) to monitor the electrocatalytic process and ex situ analysis of the electrolyte composition shows the main EGOR product is formate, with a Faradaic efficiency above 80%. Additionally, C2 chemicals such as glycolate and oxalate are detected and quantified as minor products. Density functional theory (DFT) calculations of the reaction process show the glycol-to-oxalate pathway to be favored via the glycolate formation, where the C-C bond is broken and further electro-oxidized to formate. A combination of in situ and ex situ analysis shows the main product of the ethylene glycol (EG) oxidation reaction (EGOR) is formate with a Faradaic efficiency above 80%, and glycolate and oxalate as minor chemicals on nickel selenide nanoparticles (NPs). Further density functional theory (DFT) calculation reveals the electrooxidation mechanism to these products.
Ayudas: Ministerio de Ciencia e Innovación PID2019-105490RB-C32
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00457
Agencia Estatal de Investigación CEX2021-001214-S
Agencia Estatal de Investigación PID2020-116093RB-C43
Derechos: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Lengua: Anglès
Documento: Article ; recerca ; Versió publicada
Materia: Electrocatalysis ; Ethylene glycol electro-oxidation ; Formate ; Hydrogen ; Nickel selenide ; Phase engineering
Publicado en: Advanced science, Vol. 10, Issue 15 (May 2023) , art. 2300841, ISSN 2198-3844

DOI: 10.1002/advs.202300841
PMID: 36950758


12 p, 3.8 MB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > Institut Català de Nanociència i Nanotecnologia (ICN2)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2023-10-11, última modificación el 2023-10-22



   Favorit i Compartir