Per citar aquest document: http://ddd.uab.cat/record/44322
Reactive and proactive approaches for introspective CBR
Mülâyim, Mehmet Oguz
Arcos Rossell, Josep Lluís
Universitat Autònoma de Barcelona. Departament de Ciències de la Computació

Data: 2008
Descripció: 55 p.
Resum: This work investigates applying introspective reasoning to improve the performance of Case-Based Reasoning (CBR) systems, in both reactive and proactive fashion, by guiding learning to improve how a CBR system applies its cases and by identifying possible future system deficiencies. First we present our reactive approach, a new introspective reasoning model which enables CBR systems to autonomously learn to improve multiple facets of their reasoning processes in response to poor quality solutions. We illustrate our model's benefits with experimental results from tests in an industrial design application. Then as for our proactive approach, we introduce a novel method for identifying regions in a case-base where the system gives low confidence solutions to possible future problems. Experimentation is provided for Zoology and Robo-Soccer domains and we argue how encountered regions of dubiosity help us to analyze the case-bases of a given CBR system.
Drets: Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i l'escola i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús Creative Commons
Llengua: Anglès.
Document: masterThesis
Matèria: Raonament basat en casos

Adreça alternativa: http://hdl.handle.net/2072/13262


55 p, 672.7 KB

El registre apareix a les col·leccions:
Documents de recerca > Treballs de recerca i projectes de final de carrera

 Registre creat el 2009-07-14, darrera modificació el 2016-06-11



   Favorit i Compartir