The long-step method of analytic centers for fractional problems
Nemirovski, A. (Technion - Israel Institute of Technology)

Date: 1997
Abstract: We develop a long-step surface-following version of the method of analytic centers for the fractional-linear problem min {t_0 t_0B(x) - A(x) (is in) H,B (x) (is in) K, x (is in) G}, where H is a closed convex domain, K is a convex cone contained in the recessive cone of H, G is a convex domain and B(·), A(·) are affine mappings. Tracing a two-dimensional surface of analytic centers rather than the usual path of centers allows to skip the initial "centering" phase of the path-following scheme. The proposed long-step policy of tracing the surface fits the best known overall polynomial-time complexity bounds for the method and, at the same time, seems to be more attractive computationally than the short-step policy, which was previously the only one giving good complexity bounds.
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Fractional programming ; Generalized eigenvalue problem ; Interior point methods ; Analytic centers
Published in: Mathematical Programming, vol. 77 n. 2 (1997) p. 191-224, ISSN 0025-5610



34 p, 1.3 MB
 UAB restricted access

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2006-03-13, last modified 2024-12-07



   Favorit i Compartir