| Fecha: |
2013 |
| Resumen: |
For a local endomorphism of a noetherian local ring we introduce a notion of entropy, along with two other asymptotic invariants. We use this notion of entropy to extend numerical conditions in Kunz' regularity criterion to every contracting endomorphism of a noetherian local ring, and to give a characteristic-free interpretation of the definition of Hilbert-Kunz multiplicity. We also show that everyfinite endomorphism of a complete noetherian local ring of equal characteristic can be lifted to afinite endomorphism of a complete regular local ring. The local ring of an algebraic or analytic variety at a pointfixed by afinite self-morphism inherits a local endomorphism whose entropy is well-defined. This situation arises at the vertex of the fine cone over a projective variety with a polarized self-morphism, where we compare entropy with degree. |
| Derechos: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Lengua: |
Anglès |
| Documento: |
Article ; recerca ; Versió publicada |
| Materia: |
Local algebraic dynamics ;
Local entropy ;
Endomorphism of nite length ;
Kunz' regularity criterion ;
Generalized Hilbert-Kunz multiplicity |
| Publicado en: |
Publicacions matemàtiques, Vol. 57, Núm. 2 (2013) , p. 509-544, ISSN 2014-4350 |