| Date: |
1997 |
| Abstract: |
Developing a polynomial time primal network simplex algorithm for the minimum cost flow problem has been a long standing open problem. In this paper, we develop one such algorithm that runs in O(min(n^2m log nC, n^2m^2 log n)) time, where n is the number of nodes in the network, m is the number of arcs, and C denotes the maximum absolute arc costs if arc costs are integer and (infin) otherwise. We first introduce a pseudopolynomial variant of the network simplex algorithm called the "premultiplier algorithm". We then develop a cost-scaling version of the premultiplier algorithm that solves the minimum cost flow problem in O(min(nm log nC, nm^2 log n)) pivots. With certain simple data structures, the average time per pivot can be shown to be O(n). We also show that the diameter of the network polytope is O(nm log n). . |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Subject: |
Minimum cost flows ;
Network simplex ;
Polynomial time ;
Simplex algorithm ;
Premultipliers |
| Published in: |
Mathematical Programming, vol. 78 n. 2 (1997) p. 109-129, ISSN 0025-5610 |