Modeling air temperature through a combination of remote sensing and GIS data
Cristóbal, Jordi 
(Universitat Autònoma de Barcelona. Departament de Geografia)
Ninyerola i Casals, Miquel 
(Universitat Autònoma de Barcelona. Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia)
Pons, Xavier 
(Centre de Recerca Ecològica i d'Aplicacions Forestals)
| Fecha: |
2008 |
| Resumen: |
Air temperature is involved in many environmental processes such as actual and potential evapotranspiration, net radiation and species distribution. Ground meteorological stations provide important local data of air temperature, but a continuous surface for large and heterogeneous areas is also needed. In this paper we present a hybrid methodology between Remote Sensing and Geographical Information Systems to retrieve daily instantaneous, mean, maximum and minimum air temperatures (2002-2004) as well as monthly and annual mean, maximum and minimum air temperatures (2000-2005) on a regional scale (Catalonia, northeast of the Iberian Peninsula) by means of multiple regression analysis and spatial interpolation techniques. To perform multiple regression analysis we have used geographical and multiresolution remotely sensed variables as predictors. The geographical variables we have included are altitude, latitude, continentality and solar radiation. As remote sensing predictors, we have selected those variables that are most closely related with air temperature such as albedo, land surface temperature (LST) and NDVI obtained from Landsat-5 (TM), Landsat-7 (ETM+), NOAA (AVHRR) and TERRA (MODIS) satellites. The best air temperature models are obtained when remote sensing variables are combined with geographical variables: averaged R2 = 0. 60 and averaged root mean square error (RMSE) = 1. 75C for daily temperatures, and averaged R2 = 0. 86 and averaged RMSE = 1. 00C for monthly and annual temperatures. The results also show that combined models appear in a higher frequency than only geographical or only remote sensing models (87%, 11% and 2% respectively) and that LST and NDVI are the most powerful remote sensing predictors in air temperature modeling. |
| Derechos: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Lengua: |
Anglès |
| Documento: |
Article ; recerca ; Versió publicada |
| Materia: |
Air temperature ;
GIS |
| Publicado en: |
Journal of geophysical research : atmospheres, Vol. 113 Issue D13 (July 2008) , p. D13106, ISSN 2169-897X |
DOI: 10.1029/2007JD009318
El registro aparece en las colecciones:
Documentos de investigación >
Documentos de los grupos de investigación de la UAB >
Centros y grupos de investigación (producción científica) >
Ciencias >
Methods and Applications in Remote Sensing and Geographic Information Systems Research Group (GRUMETS)Documentos de investigación >
Documentos de los grupos de investigación de la UAB >
Centros y grupos de investigación (producción científica) >
Ciencias >
CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)Artículos >
Artículos de investigaciónArtículos >
Artículos publicados
Registro creado el 2015-04-14, última modificación el 2024-11-24