Generalized semi-infinite optimization : a first order optimality condition and examples
Jongen, H. Th. (RWTH Aachen. Department of Mathematics)
Rückmann, J.-J. (University of Erlangen-Nürnberg. Institute of Applied Mathematics II)
Stein, O. (RWTH Aachen. Department of Mathematics)

Date: 1998
Abstract: We consider a generalized semi-infinite optimization problem (GSIP) of the form (GSIP) min{f(x) $x (is in) M}, where M = {x (is in) R^nh_i(x) = 0, i = 1,. . . ,m, G(x, y) >= 0, y (is in) Y(x)} and all appearing functions are continuously differentiable. Furthermore, we assume that the set Y(x) is compact for all x under consideration and the set-valued mapping Y(. ) is upper semi-continuous. The difference with a standard semi-infinite problem lies in the x-dependence of the index set Y. We prove a first order necessary optimality condition of Fritz John type without assuming a constraint qualification or any kind of reduction approach. Moreover, we discuss some geometrical properties of the feasible set M.
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Generalized semi-infinite optimization problem ; First order necessary optimality condition ; Fritz John condition
Published in: Mathematical Programming, vol. 83 n. 1 (1998) p. 145-158, ISSN 0025-5610



14 p, 493.5 KB
 UAB restricted access

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2006-03-13, last modified 2024-12-07



   Favorit i Compartir